A292566 Primes that can be reached with their prime-index, if you start with the prime-index and use iterations of A062028.
2, 11, 107, 191, 587, 719, 1061, 1171, 1181, 1259, 1327, 1487, 1597, 1619, 1933, 1949, 2011, 2141, 2269, 2477, 2803, 2999, 3041, 3049, 3079, 3169, 3229, 3259, 3617, 3733, 4493, 4799, 5009, 5023, 5171, 5261, 5581, 5657, 6131, 6211, 6301, 6311, 6421, 6451, 6529
Offset: 1
Examples
The prime-index of 11 is 5: 5+5=10, 10+1+0=11 -> after two iterations you reach 11, so 11 is in the sequence.
Programs
-
Maple
f:= proc(n) local t, p; p:= ithprime(n); t:= n; do t:= t + convert(convert(t,base,10),`+`); if t > p then return NULL elif t = p then return p fi od; end proc: map(f, [$1..1000]); # Robert Israel, Sep 19 2017
-
Mathematica
ok[p_] := Block[{n = PrimePi@ p}, While [n < p, n += Total@ IntegerDigits@ n]; n == p]; Select[Prime@ Range@ 600, ok] (* Giovanni Resta, Sep 19 2017 *)
-
PARI
is(n) = my(x=primepi(n)); while(1, x=x+sumdigits(x); if(x==n, return(1), if(x > n, return(0)))) forprime(p=1, 7000, if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Sep 19 2017
Extensions
More terms from Felix Fröhlich, Sep 19 2017
Comments