A292605 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{3;n}(x).
1, 1, 0, 19, 1, 0, 1513, 166, 1, 0, 315523, 52715, 1361, 1, 0, 136085041, 30543236, 1528806, 10916, 1, 0, 105261234643, 29664031413, 2257312622, 42421946, 87375, 1, 0, 132705221399353, 45011574747714, 4637635381695, 153778143100, 1156669095, 699042, 1, 0
Offset: 0
Examples
Triangle starts: [n\k][ 0 1 2 3 4 5] -------------------------------------------------- [0][ 1] [1][ 1, 0] [2][ 19, 1, 0] [3][ 1513, 166, 1, 0] [4][ 315523, 52715, 1361, 1, 0] [5][ 136085041, 30543236, 1528806, 10916, 1, 0]
Crossrefs
Programs
-
Maple
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f),x): A292605_row := proc(n) if n = 0 then return [1] fi; add(A278073(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end: for n from 0 to 6 do A292605_row(n) od;
-
Sage
# uses[A278073_row from A278073] def A292605_row(n): if n == 0: return [1] L = A278073_row(n) S = sum(L[k]*(x-1)^(n-k) for k in (0..n)) return expand(S).list() + [0] for n in (0..5): print(A292605_row(n))
Formula
F_{3; n}(x) = Sum_{k=0..n} A278073(n, k)*(x-1)^(n-k) for n>0 and F_{3; 0}(x) = 1.
Comments