cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292613 a(n) = [x^n] 1/(1-x)^n * Product_{k=1..n} 1/(1-x^k).

Original entry on oeis.org

1, 2, 7, 25, 92, 343, 1292, 4902, 18703, 71677, 275694, 1063636, 4114131, 15948762, 61946290, 241013869, 939125870, 3664299332, 14314777054, 55982787136, 219158088711, 858728875776, 3367576480747, 13216392846128, 51905939548950, 203989227456894, 802164259099114
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 20 2017

Keywords

Comments

Number of ways to pick n units in all partitions of 2n - Olivier Gérard, May 07 2020

Examples

			Illustration of comment for n=3, a(3)=25 :
Among the 11 integer partitions of 6, 3 have at least 3 ones.
3,1,1,1  ;  2,1,1,1,1;  1,1,1,1,1,1;
There are respectively 1, 4 and 20 ways to pick 3 of these.
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1-x)^n*Product[1/(1-x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]

Formula

a(n) ~ c * 4^n / sqrt(Pi*n), where c = 1/(2*QPochhammer[1/2, 1/2]) = 1.7313733097275318057689... - Vaclav Kotesovec, Sep 20 2017
a(n) = A292508(n,n+1). - Alois P. Heinz, Jul 16 2021