A292624 Number of solutions to 4/p = 1/x + 1/y + 1/z in positive integers, where p is the n-th prime.
3, 12, 12, 36, 48, 24, 24, 60, 120, 42, 108, 54, 42, 78, 198, 78, 156, 66, 96, 234, 42, 216, 156, 60, 48, 96, 156, 144, 90, 78, 192, 186, 102, 210, 108, 180, 144, 138, 384, 156, 276, 102, 396, 36, 138, 246, 174, 342, 216, 120, 114, 630, 48, 300
Offset: 1
Keywords
Examples
a(3) = 12 because 4/(3rd prime) = 4/5 can be expressed in the following 12 ways: 4/5 = 1/2 + 1/4 + 1/20 4/5 = 1/2 + 1/5 + 1/10 4/5 = 1/2 + 1/10 + 1/5 4/5 = 1/2 + 1/20 + 1/4 4/5 = 1/4 + 1/2 + 1/20 4/5 = 1/4 + 1/20 + 1/2 4/5 = 1/5 + 1/2 + 1/10 4/5 = 1/5 + 1/10 + 1/2 4/5 = 1/10 + 1/2 + 1/5 4/5 = 1/10 + 1/5 + 1/2 4/5 = 1/20 + 1/2 + 1/4 4/5 = 1/20 + 1/4 + 1/2
References
- For references and links see A192787.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..1000
- Christian Elsholtz, Terence Tao, Counting the number of solutions to the Erdos-Straus equation on unit fractions, arXiv:1107.1010 [math.NT], 2011-2015.
- Christian Elsholtz, Terence Tao, Counting the number of solutions to the Erdos-Straus equation on unit fractions, Journal of the Australian Mathematical Society, 94(1), 50-105, 2013. doi:10.1017/S1446788712000468.
Programs
-
Mathematica
checkmult[a_, b_, c_] := If[Denominator[c] == 1, If[a == b && a == c && b == c, Return[1], If[a != b && a != c && b != c, Return[6], Return[3]]], Return[0]]; a292581[n_] := Module[{t, t1, s, a, b, c, q = Quotient}, t = 4/n; s = 0; For[a = q[1, t] + 1, a <= q[3, t], a++, t1 = t - 1/a; For[b = Max[q[1, t1] + 1, a], b <= q[2, t1], b++, c = 1/(t1 - 1/b); s += checkmult[a, b, c]]]; Return[s]]; Reap[For[n = 1, n <= 54, n++, Print[n, " ", an = a292581[Prime[n]]]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Dec 02 2018, adapted from PARI *)
-
PARI
checkmult (a,b,c) = { if(denominator(c)==1, if(a==b && a==c && b==c, return(1), if(a!=b && a!=c && b!=c, return(6), return(3) ) ), return(0) ) } a292624(n) = { local(t, t1, s, a, b, c); t = 4/prime(n); s = 0; for (a=1\t+1, 3\t, t1=t-1/a; for (b=max(1\t1+1,a), 2\t1, c=1/(t1-1/b); s+=checkmult(a,b,c); ) ); return(s); } for (n=1,54,print1(a292624(n),", "))
Comments