A292672 Least number of symbols required to fill a grid of size n X n row by row in the greedy way such that in any row or column or rectangular 2 X 2 block no symbol occurs twice.
1, 4, 6, 6, 7, 8, 10, 10, 13, 15, 16, 17, 19, 20, 21, 22, 23, 25, 28, 30, 31, 32, 33, 35, 35, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 52, 53, 55, 57, 58, 60, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 76, 78, 78, 79, 80, 82, 84, 85, 87, 89, 90, 92, 93, 94
Offset: 1
Keywords
Examples
For n = 4, the 4 X 4 grid is filled as follows: [1 2 3 4] [3 4 1 2] [2 5 6 3] [4 1 2 5], whence a(4) = 6. For n = 3 the result would be the upper 3 X 3 part of the above grid, showing that also a(3) = 6.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..1000 (terms 1..100 from Andrew Howroyd)
- Eric Weisstein's World of Mathematics, Moore Neighborhood
Programs
-
PARI
a(n,m=2,g=matrix(n,n))={my(ok(g,k,i,j,m)=if(m,ok(g[i,],k)&&ok(g[,j],k)&&ok(concat(Vec(g[max(1,i-m+1)..i,max(1,j-m+1)..min(#g,j+m-1)])),k),!setsearch(Set(g),k))); for(i=1,n,for(j=1,n,for(k=1,n^2,ok(g,k,i,j,m)&&(g[i,j]=k)&&break)));vecmax(g)} \\ without "vecmax" the program returns the full n X n board.
-
Python
def a(n): m, s, N = 0, {1}, range(1, n+1) g = [[0 for j in range(n+2)] for i in range(n+2)] row, col = {i:set() for i in N}, {j:set() for j in N} for i in N: for j in N: rect = {g[i-1][j-1], g[i-1][j], g[i][j-1], g[i-1][j+1]} e = min(s - row[i] - col[j] - rect) g[i][j] = e row[i].add(e) col[j].add(e) if e > m: m = e s.add(m+1) return m print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Apr 13 2023
Extensions
Terms a(60) and beyond from Andrew Howroyd, Feb 22 2020
Comments