A292674 Least number of symbols required to fill a grid of size n X n row by row in the greedy way such that in any row or column or rectangular 4 X 4 block no symbol occurs twice.
1, 4, 9, 16, 18, 18, 20, 20, 22, 22, 23, 23, 23, 24, 25, 26, 26, 26, 29, 32, 32, 34, 36, 38, 38, 38, 42, 42, 42, 44, 44, 45, 48, 49, 49, 49, 54, 54, 54, 56, 59, 59, 64, 65, 68, 69, 70, 73, 76, 78, 79, 79, 82, 82, 83, 86, 87, 89, 90, 92, 95, 95, 96, 96, 97, 97
Offset: 1
Keywords
Examples
For n = 8, the grid is filled as follows: [ 1 2 3 4 5 6 7 8] [ 5 6 7 8 1 2 3 4] [ 9 10 11 12 13 14 15 16] [13 14 15 16 9 10 11 12] [ 2 3 4 17 18 5 6 7] [ 6 1 8 7 2 3 4 17] [10 5 12 19 20 1 8 13] [11 9 13 14 10 15 12 19] whence a(8) = 20.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
- Eric Weisstein's World of Mathematics, Moore Neighborhood
Programs
-
PARI
a(n,m=4,g=matrix(n,n))={my(ok(g,k,i,j,m)=if(m,ok(g[i,],k)&&ok(g[,j],k)&&ok(concat(Vec(g[max(1,i-m+1)..i,max(1,j-m+1)..min(#g,j+m-1)])),k),!setsearch(Set(g),k))); for(i=1,n,for(j=1,n,for(k=1,n^2,ok(g,k,i,j,m)&&(g[i,j]=k)&&break)));vecmax(g)} \\ without "vecmax" the program returns the full n X n board.
-
Python
# uses function in A292673 print([A292673(n, b=4) for n in range(1, 101)]) # Michael S. Branicky, Apr 13 2023
Extensions
Terms a(40) and beyond from Andrew Howroyd, Feb 22 2020
Comments