A292688 Antidiagonals of the Sierpinski carpet (as binary numbers).
1, 11, 101, 1111, 11111, 101101, 1110111, 11100111, 101000101, 1111001111, 11111011111, 101101101101, 1111111111111, 11111111111111, 101101101101101, 1110111111110111, 11100111111100111, 101000101101000101, 1111001110111001111, 11111011100111011111, 101101101000101101101
Offset: 1
Keywords
Examples
The Sierpinski carpet matrix A153490 reads 1 1 1 1 1 1 1 1 1... 1 0 1 1 0 1 1 0 1... 1 1 1 1 1 1 1 1 1... 1 1 1 0 0 0 1 1 1... 1 0 1 0 0 0 1 0 1... 1 1 1 0 0 0 1 1 1... 1 1 1 1 1 1 1 1 1... 1 0 1 1 0 1 1 0 1... 1 1 1 1 1 1 1 1 1... (...) The concatenation of the terms in the antidiagonals yields 1, 11, 101, 1111, 11111, 101101, 1110111, 11100111, 101000101, 1111001111, 11111011111, 101101101101, 1111111111111, 11111111111111, 101101101101101, 1110111111110111, 11100111111100111, 101000101101000101, 1111001110111001111, ...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..729
- Eric Weisstein's World of Mathematics, Sierpinski Carpet.
- Wikipedia, Sierpinski carpet.
Programs
-
Mathematica
A292688[i_]:=With[{a=Nest[ArrayFlatten[{{#,#,#},{#,0,#},{#,#,#}}]&,{{1}},i]},Array[FromDigits[Diagonal[a,#]]&,3^i,1-3^i]];A292688[3] (* Paolo Xausa, May 13 2023 *)
-
PARI
A292688(n,A=Mat(1))={while(#A
Comments