A153490
Sierpinski carpet, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1
Offset: 1
The Sierpinski carpet matrix reads
1 1 1 1 1 1 1 1 1 ...
1 0 1 1 0 1 1 0 1 ...
1 1 1 1 1 1 1 1 1 ...
1 1 1 0 0 0 1 1 1 ...
1 0 1 0 0 0 1 0 1 ...
1 1 1 0 0 0 1 1 1 ...
1 1 1 1 1 1 1 1 1 ...
1 0 1 1 0 1 1 0 1 ...
1 1 1 1 1 1 1 1 1 ...
(...)
so the antidiagonals are
{1},
{1, 1},
{1, 0, 1},
{1, 1, 1, 1},
{1, 1, 1, 1, 1},
{1, 0, 1, 1, 0, 1},
{1, 1, 1, 0, 1, 1, 1},
{1, 1, 1, 0, 0, 1, 1, 1},
{1, 0, 1, 0, 0, 0, 1, 0, 1},
{1, 1, 1, 1, 0, 0, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1},
{1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1},
...
Cf.
A292688 (n-th antidiagonal concatenated as binary number),
A292689 (decimal representation of these binary numbers).
Cf.
A293143 (number of vertex points in a Sierpinski Carpet).
-
<< MathWorld`Fractal`; fractal = SierpinskiCarpet;
a = fractal[4]; Table[Table[a[[m]][[n - m + 1]], {m, 1, n}], {n, 1, 12}];
Flatten[%]
-
A153490_row(n,A=Mat(1))={while(#AM. F. Hasler, Oct 23 2017
A292689
Decimal values of the antidiagonals of the Sierpinski carpet considered as binary numbers.
Original entry on oeis.org
1, 3, 5, 15, 31, 45, 119, 231, 325, 975, 2015, 2925, 8191, 16383, 23405, 61431, 118759, 166725, 499151, 1030623, 1495405, 4186623, 8372735, 11960685, 31392247, 60686823, 85197125, 255591375, 528222175, 766774125, 2147229695, 4294721535, 6135503725, 16103829495, 31132078055
Offset: 1
The Sierpinski carpet matrix A153490 reads
1 1 1 1 1 1 1 1 1 ...
1 0 1 1 0 1 1 0 1 ...
1 1 1 1 1 1 1 1 1 ...
1 1 1 0 0 0 1 1 1 ...
1 0 1 0 0 0 1 0 1 ...
1 1 1 0 0 0 1 1 1 ...
1 1 1 1 1 1 1 1 1 ...
1 0 1 1 0 1 1 0 1 ...
1 1 1 1 1 1 1 1 1 ...
...
The concatenation of the terms in the antidiagonals yields A292688 = (1, 11, 101, 1111, 11111, 101101, 1110111, 11100111, 101000101, 1111001111, 11111011111, 101101101101, 1111111111111, 11111111111111, 101101101101101, ...).
Considered as binary numbers and converted to base 10, this yields 1, 3, 5, 15, 31, 45, 119, 231, 325, ... .
-
A292689[i_]:=With[{a=Nest[ArrayFlatten[{{#,#,#},{#,0,#},{#,#,#}}]&,{{1}},i]},Array[FromDigits[Diagonal[a,#],2]&,3^i,1-3^i]];A292689[4] (* Generates 3^4 terms *) (* Paolo Xausa, May 13 2023 *)
-
A292689(n,A=Mat(1))={while(#A
A293974
Row sums of antidiagonals of the Sierpinski carpet A153490.
Original entry on oeis.org
1, 2, 2, 4, 5, 4, 6, 6, 4, 8, 10, 8, 13, 14, 10, 14, 13, 8, 14, 16, 12, 18, 18, 12, 16, 14, 8, 16, 20, 16, 26, 28, 20, 28, 26, 16, 29, 34, 26, 40, 41, 28, 38, 34, 20, 34, 38, 28, 41, 40, 26, 34, 29, 16, 30, 36, 28, 44, 46, 32, 44, 40, 24, 42, 48, 36, 54, 54, 36, 48, 42, 24
Offset: 1
-
A293974[i_]:=With[{a=Nest[ArrayFlatten[{{#,#,#},{#,0,#},{#,#,#}}]&,{{1}},i]},Array[Total[Diagonal[a,#]]&,3^i,1-3^i]];A293974[5] (* Generates 3^5 terms *) (* Paolo Xausa, May 14 2023 *)
-
A293974(n,A=Mat(1))={while(#A
A293973
Sierpinski carpet iterations: start with a(0) = 1; read a(n) as a 3^n X 3^n binary matrix, replace 1 with [111;101;111] and 0 with [000;000;000], concatenate the 3^(n+1) rows of the new matrix.
Original entry on oeis.org
1, 111101111, 111111111101101101111111111111000111101000101111000111111111111101101101111111111
Offset: 0
Consider a(0) = 1 as a 1 X 1 matrix, replace the 1 by the 3 X 3 matrix E = [1,1,1; 1,0,1; 1,1,1], then this matrix is the result. Concatenating all elements yields a(1) = concat(111,101,111) = 111101111.
Now reconsider a(1) as the previously given 3 X 3 matrix E. Replace every 1 by that same matrix E. This yields the 9 X 9 matrix
[ 1 1 1 1 1 1 1 1 1 ]
[ 1 0 1 1 0 1 1 0 1 ]
[ 1 1 1 1 1 1 1 1 1 ]
[ 1 1 1 0 0 0 1 1 1 ]
[ 1 0 1 0 0 0 1 0 1 ]
[ 1 1 1 0 0 0 1 1 1 ]
[ 1 1 1 1 1 1 1 1 1 ]
[ 1 0 1 1 0 1 1 0 1 ]
[ 1 1 1 1 1 1 1 1 1 ].
Concatenating all elements yields a(2) = 111111111101101101111111111111000111101000101111000111111111111101101101111111111.
-
A293973[n_]:=FromDigits[Flatten[Nest[ArrayFlatten[{{#,#,#},{#,0,#},{#,#,#}}]&,{{1}},n]]];Array[A293973,4,0] (* Paolo Xausa, May 12 2023 *)
-
a(n,A=Mat(1),E=2^9-1-2^4)={for(k=1,n, A=matrix(3^k,3^k, i,j, A[(i+2)\3,(j+2)\3]&&bittest(E,(i-1)%3*3+(j-1)%3)));fromdigits(apply(t->fromdigits(t~,10),Vec(A)),10^3^n)}
Showing 1-4 of 4 results.
Comments