A153490
Sierpinski carpet, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1
Offset: 1
The Sierpinski carpet matrix reads
1 1 1 1 1 1 1 1 1 ...
1 0 1 1 0 1 1 0 1 ...
1 1 1 1 1 1 1 1 1 ...
1 1 1 0 0 0 1 1 1 ...
1 0 1 0 0 0 1 0 1 ...
1 1 1 0 0 0 1 1 1 ...
1 1 1 1 1 1 1 1 1 ...
1 0 1 1 0 1 1 0 1 ...
1 1 1 1 1 1 1 1 1 ...
(...)
so the antidiagonals are
{1},
{1, 1},
{1, 0, 1},
{1, 1, 1, 1},
{1, 1, 1, 1, 1},
{1, 0, 1, 1, 0, 1},
{1, 1, 1, 0, 1, 1, 1},
{1, 1, 1, 0, 0, 1, 1, 1},
{1, 0, 1, 0, 0, 0, 1, 0, 1},
{1, 1, 1, 1, 0, 0, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1},
{1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1},
...
Cf.
A292688 (n-th antidiagonal concatenated as binary number),
A292689 (decimal representation of these binary numbers).
Cf.
A293143 (number of vertex points in a Sierpinski Carpet).
-
<< MathWorld`Fractal`; fractal = SierpinskiCarpet;
a = fractal[4]; Table[Table[a[[m]][[n - m + 1]], {m, 1, n}], {n, 1, 12}];
Flatten[%]
-
A153490_row(n,A=Mat(1))={while(#AM. F. Hasler, Oct 23 2017
A292688
Antidiagonals of the Sierpinski carpet (as binary numbers).
Original entry on oeis.org
1, 11, 101, 1111, 11111, 101101, 1110111, 11100111, 101000101, 1111001111, 11111011111, 101101101101, 1111111111111, 11111111111111, 101101101101101, 1110111111110111, 11100111111100111, 101000101101000101, 1111001110111001111, 11111011100111011111, 101101101000101101101
Offset: 1
The Sierpinski carpet matrix A153490 reads
1 1 1 1 1 1 1 1 1...
1 0 1 1 0 1 1 0 1...
1 1 1 1 1 1 1 1 1...
1 1 1 0 0 0 1 1 1...
1 0 1 0 0 0 1 0 1...
1 1 1 0 0 0 1 1 1...
1 1 1 1 1 1 1 1 1...
1 0 1 1 0 1 1 0 1...
1 1 1 1 1 1 1 1 1...
(...)
The concatenation of the terms in the antidiagonals yields 1, 11, 101, 1111, 11111, 101101, 1110111, 11100111, 101000101, 1111001111, 11111011111, 101101101101, 1111111111111, 11111111111111, 101101101101101, 1110111111110111, 11100111111100111, 101000101101000101, 1111001110111001111, ...
-
A292688[i_]:=With[{a=Nest[ArrayFlatten[{{#,#,#},{#,0,#},{#,#,#}}]&,{{1}},i]},Array[FromDigits[Diagonal[a,#]]&,3^i,1-3^i]];A292688[3] (* Paolo Xausa, May 13 2023 *)
-
A292688(n,A=Mat(1))={while(#A
A293974
Row sums of antidiagonals of the Sierpinski carpet A153490.
Original entry on oeis.org
1, 2, 2, 4, 5, 4, 6, 6, 4, 8, 10, 8, 13, 14, 10, 14, 13, 8, 14, 16, 12, 18, 18, 12, 16, 14, 8, 16, 20, 16, 26, 28, 20, 28, 26, 16, 29, 34, 26, 40, 41, 28, 38, 34, 20, 34, 38, 28, 41, 40, 26, 34, 29, 16, 30, 36, 28, 44, 46, 32, 44, 40, 24, 42, 48, 36, 54, 54, 36, 48, 42, 24
Offset: 1
-
A293974[i_]:=With[{a=Nest[ArrayFlatten[{{#,#,#},{#,0,#},{#,#,#}}]&,{{1}},i]},Array[Total[Diagonal[a,#]]&,3^i,1-3^i]];A293974[5] (* Generates 3^5 terms *) (* Paolo Xausa, May 14 2023 *)
-
A293974(n,A=Mat(1))={while(#A
Showing 1-3 of 3 results.
Comments