A292689 Decimal values of the antidiagonals of the Sierpinski carpet considered as binary numbers.
1, 3, 5, 15, 31, 45, 119, 231, 325, 975, 2015, 2925, 8191, 16383, 23405, 61431, 118759, 166725, 499151, 1030623, 1495405, 4186623, 8372735, 11960685, 31392247, 60686823, 85197125, 255591375, 528222175, 766774125, 2147229695, 4294721535, 6135503725, 16103829495, 31132078055
Offset: 1
Examples
The Sierpinski carpet matrix A153490 reads 1 1 1 1 1 1 1 1 1 ... 1 0 1 1 0 1 1 0 1 ... 1 1 1 1 1 1 1 1 1 ... 1 1 1 0 0 0 1 1 1 ... 1 0 1 0 0 0 1 0 1 ... 1 1 1 0 0 0 1 1 1 ... 1 1 1 1 1 1 1 1 1 ... 1 0 1 1 0 1 1 0 1 ... 1 1 1 1 1 1 1 1 1 ... ... The concatenation of the terms in the antidiagonals yields A292688 = (1, 11, 101, 1111, 11111, 101101, 1110111, 11100111, 101000101, 1111001111, 11111011111, 101101101101, 1111111111111, 11111111111111, 101101101101101, ...). Considered as binary numbers and converted to base 10, this yields 1, 3, 5, 15, 31, 45, 119, 231, 325, ... .
Links
- Paolo Xausa, Table of n, a(n) for n = 1..729
- Eric Weisstein's World of Mathematics, Sierpinski Carpet.
- Wikipedia, Sierpinski carpet.
Programs
-
Mathematica
A292689[i_]:=With[{a=Nest[ArrayFlatten[{{#,#,#},{#,0,#},{#,#,#}}]&,{{1}},i]},Array[FromDigits[Diagonal[a,#],2]&,3^i,1-3^i]];A292689[4] (* Generates 3^4 terms *) (* Paolo Xausa, May 13 2023 *)
-
PARI
A292689(n,A=Mat(1))={while(#A
Formula
a(k+1) = 2*a(k)+1 for all k in A003462 = (1, 4, 13, 40, 121, 364, ...). (Conjectured.) - R. J. Cano, Oct 25 2017
This is true, moreover, a(k) = 2^k-1 for these k (and k' = k+1), and the neighboring antidiagonals (k-1 and k+2) have bitmaps of the form {101}*(101 repeated). - M. F. Hasler, Oct 25 2017
Comments