A292691 a(n) = C(A001359(n)), n >= 1, with C(n) = (4*((n-1)! + 1) + n)/(n*(n+2)) for n >= 2.
1, 3, 101505, 259105757127, 1356566605613854774200240267, 1851197466245939272480116323530608949000567215
Offset: 1
Keywords
Examples
a(2) = 3, because A001359(2) = 5 and C(5) = (4*(4! + 1) + 5)/(5*7) = 3. a(2) = 3 because A014574(2) = 6 and delta(6) = (4*4! + 6 + 3)/35 = 3.
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Science Publications, 1979.
- P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag NY 1996, pp. 259-260 (a proof of Clement's theorem).
Links
- Jaime Gómez, Table of n, a(n) for n = 1..23
- P. A. Clement, Congruences for sets of primes, American Mathematical Monthly, vol. 56 (1949), pages 23-25.
- L. Cong and Z. Li, On Wilson's Theorem and Polignac's Conjecture, arXiv:math/0408018 [math.NT], 2004.
Programs
-
Mathematica
p1[1] = 3; p1[n_] := p1[n] = (p = NextPrime[p1[n-1]]; While[!PrimeQ[p + 2], p = NextPrime[p]]; p); a[n_] := (4*((p1[n] - 1)! + 1) + p1[n])/(p1[n]*(p1[n] + 2)); Array[a, 6] (* Jean-François Alcover, Nov 04 2017 *)
-
PARI
c(n) = (4*(n - 2)! + n + 3) / (n^2 - 1); lista(nn) = forprime(p=2, nn, if (isprime(p+2), print1(c(p+1), ", "));); \\ Michel Marcus, Sep 21 2017
-
Python
# Python version 2.7 import math from sympy import * list = [] n = 3 l = 1 # parameter that indicates the desired length of the list x = 1 while x <= l: y = (4*factorial(n-2))+n+3 z = n**2 - 1 if y % z == 0: print (y/z) list.append(y/z) n+=1 x+=1
Formula
a(n) = (4*((p1(n)-1)! + 1) + p1(n))/(p1(n)*(p1(n) + 2)) with p1(n) = A001359(n), for n >= 1. See the name.
From Wilson's theorem (see Hardy and Wright, Theorem 80, p. 68), a(n) = (4*kp1(n) + 1)/(p1(n) + 2) with p1(n) = A000359(n) and kp1(n) = A007619(p1(n)).
a(n) = delta(A014574(n)) with delta(n) = (4*(n-2)!+ n + 3)/(n^2 - 1).
delta(n) ~ ((4*(n-2)^(n - 2)* sqrt(2*Pi*(n - 2))) / (e^(n - 2)*(n^2 - 1)))+((n + 3) / (n^2 - 1)) for large n-values (using Stirling's approximation for n!).
Extensions
Edited by Wolfdieter Lang, Oct 25 2017
Comments