A292723 Number of multisets of nonempty words with a total of n letters over 8-ary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 1, 4, 14, 67, 343, 2151, 14900, 119259, 692640, 4659774, 30077836, 209311030, 1433872892, 10689029713, 76772260527, 600293120366, 4142024767610, 30775147154084, 221566161988587, 1663421685691847, 12221938274124959, 93706886872251562, 696726353909296853
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: a:= proc(n) option remember; `if`(n=0, 1, add(add(d*d!* b(d, 0, 8), d=numtheory[divisors](j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..35);