A292746 Triangle read by rows: T(n,k) (n>=0, 0<=k<=n) = number of partitions of n with exactly k kinds of 1's which are introduced in ascending order.
1, 0, 1, 1, 1, 1, 1, 2, 3, 1, 2, 3, 8, 6, 1, 2, 5, 19, 26, 10, 1, 4, 7, 43, 97, 66, 15, 1, 4, 11, 93, 334, 361, 141, 21, 1, 7, 15, 197, 1095, 1778, 1066, 267, 28, 1, 8, 22, 409, 3482, 8207, 7108, 2668, 463, 36, 1, 12, 30, 840, 10855, 36310, 43747, 23116, 5909, 751, 45, 1
Offset: 0
Examples
T(3,0) = 1: 3. T(3,1) = 2: 21a, 1a1a1a. T(3,2) = 3: 1a1a1b, 1a1b1a, 1a1b1b. (The two kinds of 1's are labeled 1a and 1b) T(3,3) = 1: 1a1b1c. Triangle T(n,k) begins: 1; 0, 1; 1, 1, 1; 1, 2, 3, 1; 2, 3, 8, 6, 1; 2, 5, 19, 26, 10, 1; 4, 7, 43, 97, 66, 15, 1; 4, 11, 93, 334, 361, 141, 21, 1; 7, 15, 197, 1095, 1778, 1066, 267, 28, 1; 8, 22, 409, 3482, 8207, 7108, 2668, 463, 36, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
f:= (n, k)-> add(Stirling2(n, j), j=0..k): b:= proc(n, i, k) option remember; `if`(n=0 or i<2, f(n, k), add(b(n-i*j, i-1, k), j=0..n/i)) end: T:= (n, k)-> b(n$2, k)-`if`(k=0, 0, b(n$2, k-1)): seq(seq(T(n, k), k=0..n), n=0..14); # second Maple program: b:= proc(n, i, k) option remember; `if`(n=0 or i<2, k^n, b(n, i-1, k) +b(n-i, min(i, n-i), k)) end: T:= (n, k)-> add((-1)^i*b(n$2, k-i)/((k-i)!*i!), i=0..k): seq(seq(T(n, k), k=0..n), n=0..14);
-
Mathematica
f[n_, k_] := Sum[StirlingS2[n, j], {j, 0, k}]; b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, f[n, k], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]]; T[n_, k_] := b[n, n, k] - If[k == 0, 0, b[n, n, k - 1]]; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 17 2018, translated from Maple *)
Formula
Extensions
Definition clarified by N. J. A. Sloane, Dec 12 2020