cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292746 Triangle read by rows: T(n,k) (n>=0, 0<=k<=n) = number of partitions of n with exactly k kinds of 1's which are introduced in ascending order.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 3, 1, 2, 3, 8, 6, 1, 2, 5, 19, 26, 10, 1, 4, 7, 43, 97, 66, 15, 1, 4, 11, 93, 334, 361, 141, 21, 1, 7, 15, 197, 1095, 1778, 1066, 267, 28, 1, 8, 22, 409, 3482, 8207, 7108, 2668, 463, 36, 1, 12, 30, 840, 10855, 36310, 43747, 23116, 5909, 751, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2017

Keywords

Examples

			T(3,0) = 1: 3.
T(3,1) = 2: 21a, 1a1a1a.
T(3,2) = 3: 1a1a1b, 1a1b1a, 1a1b1b. (The two kinds of 1's are labeled 1a and 1b)
T(3,3) = 1: 1a1b1c.
Triangle T(n,k) begins:
  1;
  0,  1;
  1,  1,   1;
  1,  2,   3,    1;
  2,  3,   8,    6,    1;
  2,  5,  19,   26,   10,    1;
  4,  7,  43,   97,   66,   15,    1;
  4, 11,  93,  334,  361,  141,   21,   1;
  7, 15, 197, 1095, 1778, 1066,  267,  28,  1;
  8, 22, 409, 3482, 8207, 7108, 2668, 463, 36, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A002865, A000041(n-1) for n>0, A259401(n-2) for n>1, A320816, A320817, A320818, A320819, A320820, A320821, A320822, A320823.
Main diagonal and first lower diagonal give: A000012, A000217.
Row sums give A292503.
T(2n,n) gives A292747.

Programs

  • Maple
    f:= (n, k)-> add(Stirling2(n, j), j=0..k):
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
          f(n, k), add(b(n-i*j, i-1, k), j=0..n/i))
        end:
    T:= (n, k)-> b(n$2, k)-`if`(k=0, 0, b(n$2, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..14);
    # second Maple program:
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
          k^n, b(n, i-1, k) +b(n-i, min(i, n-i), k))
        end:
    T:= (n, k)-> add((-1)^i*b(n$2, k-i)/((k-i)!*i!), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..14);
  • Mathematica
    f[n_, k_] := Sum[StirlingS2[n, j], {j, 0, k}];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, f[n, k], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
    T[n_, k_] := b[n, n, k] - If[k == 0, 0, b[n, n, k - 1]];
    Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 17 2018, translated from Maple *)

Formula

T(n,k) = A292745(n,k) - A292745(n,k-1) for k>0. T(n,0) = A292745(n,0) = A002865(n).
T(n,k) = Sum_{i=0..k} (-1)^i * A292741(n, k-i) / ((k-i)!*i!).

Extensions

Definition clarified by N. J. A. Sloane, Dec 12 2020