A292747 Number of partitions of 2n with exactly n kinds of 1's which are introduced in ascending order.
1, 1, 8, 97, 1778, 43747, 1349703, 50033463, 2164920950, 107074391802, 5957871478583, 368330684797595, 25046735249606820, 1857906353180702199, 149289720057575358424, 12917953683720554797237, 1197556745092101849164899, 118414507831659267311128558
Offset: 0
Keywords
Examples
a(2) = 8: 21a1b, 1a1a1a1b, 1a1a1b1a, 1a1a1b1b, 1a1b1a1a, 1a1b1a1b, 1a1b1b1a, 1a1b1b1b (the two kinds of 1's are denoted by 1a and 1b).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Cf. A292746.
Programs
-
Maple
f:= (n, k)-> add(Stirling2(n, j), j=0..k): b:= proc(n, i, k) option remember; `if`(n=0 or i<2, f(n, k), add(b(n-i*j, i-1, k), j=0..n/i)) end: a:= n-> b(2*n$2, n)-b(2*n$2, n-1): seq(a(n), n=0..20);
-
Mathematica
f[n_, k_] := Sum[StirlingS2[n, j], {j, 0, k}]; b[n_, i_, k_] := b[n, i, k] = If[n==0 || i<2, f[n, k], Sum[b[n - i*j, i-1, k], {j, 0, n/i}]]; a[n_] := b[2n, 2n, n] - b[2n, 2n, n-1]; a /@ Range[0, 20] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)
Formula
a(n) = A292746(2n,n).
a(n) ~ 2^(2*n) * n^(n-1/2) / (sqrt(2*Pi*(1-c)) * exp(n) * c^n * (2-c)^n), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.40637573995995990767695812412483975821... - Vaclav Kotesovec, Sep 28 2017