cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292747 Number of partitions of 2n with exactly n kinds of 1's which are introduced in ascending order.

Original entry on oeis.org

1, 1, 8, 97, 1778, 43747, 1349703, 50033463, 2164920950, 107074391802, 5957871478583, 368330684797595, 25046735249606820, 1857906353180702199, 149289720057575358424, 12917953683720554797237, 1197556745092101849164899, 118414507831659267311128558
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2017

Keywords

Examples

			a(2) = 8: 21a1b, 1a1a1a1b, 1a1a1b1a, 1a1a1b1b, 1a1b1a1a, 1a1b1a1b, 1a1b1b1a, 1a1b1b1b  (the two kinds of 1's are denoted by 1a and 1b).
		

Crossrefs

Cf. A292746.

Programs

  • Maple
    f:= (n, k)-> add(Stirling2(n, j), j=0..k):
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
          f(n, k), add(b(n-i*j, i-1, k), j=0..n/i))
        end:
    a:= n-> b(2*n$2, n)-b(2*n$2, n-1):
    seq(a(n), n=0..20);
  • Mathematica
    f[n_, k_] := Sum[StirlingS2[n, j], {j, 0, k}];
    b[n_, i_, k_] := b[n, i, k] = If[n==0 || i<2, f[n, k], Sum[b[n - i*j, i-1, k], {j, 0, n/i}]];
    a[n_] := b[2n, 2n, n] - b[2n, 2n, n-1];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)

Formula

a(n) = A292746(2n,n).
a(n) ~ 2^(2*n) * n^(n-1/2) / (sqrt(2*Pi*(1-c)) * exp(n) * c^n * (2-c)^n), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.40637573995995990767695812412483975821... - Vaclav Kotesovec, Sep 28 2017