cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292767 Square array read by antidiagonals downwards: T(k,n) = sum of the site-perimeters of words of length n >= 1 over an alphabet of size k >= 1.

Original entry on oeis.org

4, 6, 10, 8, 28, 18, 10, 72, 74, 28, 12, 176, 281, 152, 40, 14, 416, 1020, 762, 270, 54, 16, 960, 3591, 3664, 1680, 436, 70, 18, 2176, 12366, 17120, 10050, 3238, 658, 88, 20, 4864, 41877, 78336, 58500, 23160, 5677, 944, 108, 22, 10752, 139968, 352768, 333750, 161352, 47236, 9276, 1302, 130
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2017

Keywords

Examples

			Array begins (rows are indexed by k = 1,2,3,4,...; columns by n = 1,2,3,4,...):
   4,   6,    8,    10,     12,      14,       16, ...
  10,  28,   72,   176,    416,     960,     2176, ...
  18,  74,  281,  1020,   3591,   12366,    41877, ...
  28, 152,  762,  3664,  17120,   78336,   352768, ...
  40, 270, 1680, 10050,  58500,  333750,  1875000, ...
  54, 436, 3238, 23160, 161352, 1102464,  7420896, ...
  70, 658, 5677, 47236, 383131, 3049270, 23916361, ...
  ...
		

Crossrefs

Row k=2 is A128135.

Programs

  • Mathematica
    RowGf[k_] := k x (36 + 12k + (8 - 24k - 8k^2) x + (2 - 5k + 4k^2 - k^3) x^2)/(12(1 - k x)^2);
    T[k_, n_] := SeriesCoefficient[RowGf[k], {x, 0, n}];
    Table[T[k - n + 1, n], {k, 1, 10}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Aug 27 2019, from PARI *)
  • PARI
    RowGf(k) = {k*x*(36 + 12*k + (8 - 24*k - 8*k^2)*x + (2 - 5*k + 4*k^2 - k^3)*x^2)/(12*(1 - k*x)^2)}
    M(k,n)={Mat(vectorv(k,k,Vec(RowGf(k) + O(x*x^n))))}
    { M(10,8) } \\ Andrew Howroyd, Oct 27 2018

Formula

G.f. of row k: k*x*(36 + 12*k + (8 - 24*k - 8*k^2)*x + (2 - 5*k + 4*k^2 - k^3)*x^2)/(12*(1 - k*x)^2). - Andrew Howroyd, Oct 27 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Oct 27 2018