A292789 Triangle read by rows: T(n,k) = (-3)*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = (-2)^m.
0, 1, 1, 0, -3, -6, -2, -2, 7, 25, 0, 6, 12, -9, -84, 4, 4, -14, -50, -23, 229, 0, -12, -24, 18, 168, 237, -450, -8, -8, 28, 100, 46, -458, -1169, 181, 0, 24, 48, -36, -336, -474, 900, 4407, 3864, 16, 16, -56, -200, -92, 916, 2338, -362, -13583, -25175, 0, -48
Offset: 0
Examples
First few rows are: 0; 1, 1; 0, -3, -6; -2, -2, 7, 25; 0, 6, 12, -9, -84; 4, 4, -14, -50, -23, 229; 0, -12, -24, 18, 168, 237, -450; -8, -8, 28, 100, 46, -458, -1169, 181; 0, 24, 48, -36, -336, -474, 900, 4407, 3864. -------------------------------------------------------------- The diagonal is {0, 1, -6, 25, -84, ...} and the next diagonal is {1, -3, 7, -9, -23, ...}. Two sequences have the following property: 1^2 + 2* 0^2 = 1 (= 11^0), (-3)^2 + 2* 1^2 = 11 (= 11^1), 7^2 + 2* (-6)^2 = 121 (= 11^2), (-9)^2 + 2* 25^2 = 1331 (= 11^3), (-23)^2 + 2*(-84)^2 = 14641 (= 11^4), ...
Links
- Seiichi Manyama, Rows n = 0..139, flattened
Crossrefs
Formula
T(n+1,n)^2 + 2*T(n,n)^2 = 11^n.