A292799 Expansion of 1/(1 + x + x/(1 + x + x^2/(1 + x + x^3/(1 + x + x^4/(1 + x + x^5/(1 + ...)))))), a continued fraction.
1, -2, 5, -12, 27, -58, 120, -239, 456, -826, 1397, -2130, 2666, -1727, -4308, 24597, -80658, 220301, -544803, 1259278, -2760324, 5775490, -11553490, 22039330, -39774088, 66751007, -100238388, 120817159, -61934817, -261953355, 1315627072, -4183664882, 11262428169, -27602763180
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A088355.
Programs
-
Mathematica
nmax = 33; CoefficientList[Series[1/(1 + x + ContinuedFractionK[x^k, 1 + x, {k, 1, nmax}]), {x, 0, nmax}], x] nmax = 40; CoefficientList[Series[1/Fold[(1 + x + #2/#1) &, 1, Reverse[x^Range[nmax]]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 24 2017 *)