cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A292800 Expansion of 1/(1 - x - x^3/(1 - x^5 - x^7/(1 - x^9 - x^11/(1 - x^13 - x^15/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 9, 14, 21, 32, 49, 74, 113, 172, 262, 399, 607, 925, 1409, 2146, 3269, 4979, 7584, 11552, 17596, 26803, 40826, 62187, 94725, 144287, 219782, 334776, 509939, 776752, 1183167, 1802230, 2745201, 4181558, 6369454, 9702111, 14778499, 22510979, 34289286, 52230301, 79558503
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-x^(4 k - 1), 1 - x^(4 k + 1), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

a(n) ~ c * d^n, where d = 1.523225094265657459818421502249017511338863636291677936060889201502867407829... and c = 0.47457266943464547141454496057039844482970984208404015222172896259335... - Vaclav Kotesovec, Sep 24 2017

A292801 Expansion of 1/(1 + x^2 + x^3/(1 + x^5 + x^7/(1 + x^11 + x^13/(1 + ... + x^prime(2*k)/(1 + x^prime(2*k+1) + ...))))), a continued fraction.

Original entry on oeis.org

1, 0, -1, -1, 1, 2, 0, -3, -1, 3, 4, -3, -7, -1, 11, 6, -10, -17, 8, 26, 8, -40, -28, 33, 71, -19, -99, -49, 141, 125, -99, -285, 30, 371, 253, -492, -541, 263, 1122, 57, -1352, -1197, 1672, 2260, -548, -4345, -871, 4804, 5387, -5475, -9182, 294, 16526, 5725, -16587, -23366
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[1/(1 + x^2 + ContinuedFractionK[x^Prime[2 k], 1 + x^Prime[2 k + 1], {k, 1, nmax}]), {x, 0, nmax}], x]
Showing 1-2 of 2 results.