A292800 Expansion of 1/(1 - x - x^3/(1 - x^5 - x^7/(1 - x^9 - x^11/(1 - x^13 - x^15/(1 - ...))))), a continued fraction.
1, 1, 1, 2, 3, 4, 6, 9, 14, 21, 32, 49, 74, 113, 172, 262, 399, 607, 925, 1409, 2146, 3269, 4979, 7584, 11552, 17596, 26803, 40826, 62187, 94725, 144287, 219782, 334776, 509939, 776752, 1183167, 1802230, 2745201, 4181558, 6369454, 9702111, 14778499, 22510979, 34289286, 52230301, 79558503
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nmax = 45; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-x^(4 k - 1), 1 - x^(4 k + 1), {k, 1, nmax}]), {x, 0, nmax}], x]
Formula
a(n) ~ c * d^n, where d = 1.523225094265657459818421502249017511338863636291677936060889201502867407829... and c = 0.47457266943464547141454496057039844482970984208404015222172896259335... - Vaclav Kotesovec, Sep 24 2017