cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292804 Number A(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 2, 0, 1, 4, 12, 16, 2, 0, 1, 5, 22, 55, 42, 3, 0, 1, 6, 35, 132, 225, 116, 4, 0, 1, 7, 51, 260, 729, 927, 310, 5, 0, 1, 8, 70, 452, 1805, 4000, 3729, 816, 6, 0, 1, 9, 92, 721, 3777, 12376, 21488, 14787, 2121, 8, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2017

Keywords

Examples

			A(2,2) = 5: {aa}, {ab}, {ba}, {bb}, {a,b}.
Square array A(n,k) begins:
  1, 1,   1,     1,      1,      1,       1,       1, ...
  0, 1,   2,     3,      4,      5,       6,       7, ...
  0, 1,   5,    12,     22,     35,      51,      70, ...
  0, 2,  16,    55,    132,    260,     452,     721, ...
  0, 2,  42,   225,    729,   1805,    3777,    7042, ...
  0, 3, 116,   927,   4000,  12376,   31074,   67592, ...
  0, 4, 310,  3729,  21488,  83175,  250735,  636517, ...
  0, 5, 816, 14787, 113760, 550775, 1993176, 5904746, ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A000326.
Main diagonal gives A292805.

Programs

  • Maple
    h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
        end:
    A:= (n, k)-> h(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]];
    A[n_, k_] := h[n, n, k];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)

Formula

G.f. of column k: Product_{j>=1} (1+x^j)^(k^j).
A(n,k) = Sum_{i=0..k} C(k,i) * A319501(n,i).