A292804 Number A(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 2, 0, 1, 4, 12, 16, 2, 0, 1, 5, 22, 55, 42, 3, 0, 1, 6, 35, 132, 225, 116, 4, 0, 1, 7, 51, 260, 729, 927, 310, 5, 0, 1, 8, 70, 452, 1805, 4000, 3729, 816, 6, 0, 1, 9, 92, 721, 3777, 12376, 21488, 14787, 2121, 8, 0
Offset: 0
Examples
A(2,2) = 5: {aa}, {ab}, {ba}, {bb}, {a,b}. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, 7, ... 0, 1, 5, 12, 22, 35, 51, 70, ... 0, 2, 16, 55, 132, 260, 452, 721, ... 0, 2, 42, 225, 729, 1805, 3777, 7042, ... 0, 3, 116, 927, 4000, 12376, 31074, 67592, ... 0, 4, 310, 3729, 21488, 83175, 250735, 636517, ... 0, 5, 816, 14787, 113760, 550775, 1993176, 5904746, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i))) end: A:= (n, k)-> h(n$2, k): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]]; A[n_, k_] := h[n, n, k]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)
Formula
G.f. of column k: Product_{j>=1} (1+x^j)^(k^j).
A(n,k) = Sum_{i=0..k} C(k,i) * A319501(n,i).