cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A177409 G.f. satisfies: x = A(x) - A(x)^2 - A(A(x))^2.

Original entry on oeis.org

1, 2, 12, 108, 1208, 15536, 220832, 3390480, 55411872, 954553664, 17211258240, 323148560768, 6293245904640, 126740607526400, 2633207863038976, 56330595706808576, 1238815010325576192, 27970477203200824320
Offset: 1

Views

Author

Paul D. Hanna, Jun 01 2010

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 12*x^3 + 108*x^4 + 1208*x^5 + 15536*x^6 +...
Related expansions:
A(x)^2 = x^2 + 4*x^3 + 28*x^4 + 264*x^5 + 2992*x^6 + 38496*x^7 +...
A(A(x)) = x + 4*x^2 + 32*x^3 + 344*x^4 + 4384*x^5 + 62624*x^6 +...
A(A(x))^2 = x^2 + 8*x^3 + 80*x^4 + 944*x^5 + 12544*x^6 + 182336*x^7 +...
A_{-1}(x) = x - 2*x^2 - 4*x^3 - 28*x^4 - 264*x^5 - 2992*x^6 -...
...
Illustrate A_{n}(x) = A_{n+1}(x) - A_{n+1}(x)^2 - A_{n+2}(x)^2 by the following tables of coefficients in the iterations of g.f. A(x).
Coefficients in iterations A_{n}(x), n=1..8, begin:
A_1: [1, 2, 12, 108, 1208, 15536, 220832, 3390480,...];
A_2: [1, 4, 32, 344, 4384, 62624, 973056, 16152608,...];
A_3: [1, 6, 60, 756, 10936, 173968, 2972320, 53760496,...];
A_4: [1, 8, 96, 1392, 22656, 399808, 7503616, 147999296,...];
A_5: [1, 10, 140, 2300, 41720, 811760, 16670112, 357673168,...];
A_6: [1, 12, 192, 3528, 70688, 1506656, 33688064, 783303776,...];
A_7: [1, 14, 252, 5124, 112504, 2610384, 63227808, 1586464432,...];
A_8: [1, 16, 320, 7136, 170496, 4281728, 111800832, 3014395008,...].
...
Coefficients in squared iterations A_{n}(x)^2, for n=1..8, begin:
(A_1)^2: [0, 1, 4, 28, 264, 2992, 38496, 544464, 8298080,...];
(A_2)^2: [0, 1, 8, 80, 944, 12544, 182336, 2846016, 47113792,...];
(A_3)^2: [0, 1, 12, 156, 2232, 34544, 569888, 9916112, ...];
(A_4)^2: [0, 1, 16, 256, 4320, 76800, 1429376, 27691776, ...];
(A_5)^2: [0, 1, 20, 380, 7400, 149040, 3101920, 66547024, ...];
(A_6)^2: [0, 1, 24, 528, 11664, 262912, 6064576, 143126848, ...];
(A_7)^2: [0, 1, 28, 700, 17304, 431984, 10953376, 282503760, ...];
(A_8)^2: [0, 1, 32, 896, 24512, 671744, 18586368, 520656896, ...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x-x^2-(A+x*O(x^n))^2)); polcoeff(A, n))}

Formula

G.f. satisfies: A_{n}(x) = A_{n+1}(x) - A_{n+1}(x)^2 - A_{n+2}(x)^2 where A_{n+1}(x) = A_{n}(A(x)) denotes iteration with A_0(x)=x.
G.f. satisfies: A(x) = A(A(x)) - A(A(x))^2 - A(A(A(x)))^2.
G.f. satisfies: x = A( x-x^2 - A(x)^2 ).
...
Given g.f. A(x), A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with:
. A = 1 + xA^2 + xB^2;
. B = A + xB^2 + xC^2;
. C = B + xC^2 + xD^2;
. D = C + xD^2 + xE^2; ...
. also B = A(A(x))/x, C = A(A(A(x)))/x, D = A(A(A(A(x))))/x, etc.

A292809 G.f. A(x) satisfies: A( 2*x - A(x) ) = 2*x - A(x) + x^2.

Original entry on oeis.org

1, 1, 2, 9, 56, 420, 3572, 33328, 334354, 3559310, 39838760, 465743720, 5658983108, 71191948512, 924554859776, 12365546196641, 169995491295312, 2398380272232272, 34680290150700800, 513390937937217088, 7773229533145403728, 120277760289804227632, 1900583166564027019136, 30649888151334972466392, 504153517331248726221392, 8454018409655883681321232, 144451967918022160558965408, 2513925490162481746629200624, 44542176917098830784415314624
Offset: 1

Views

Author

Paul D. Hanna, Sep 24 2017

Keywords

Comments

Apart from signs, essentially the same as A138740.
Apparently a(n) = A276370(n) wherever defined. - R. J. Mathar, Sep 26 2017

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 9*x^4 + 56*x^5 + 420*x^6 + 3572*x^7 + 33328*x^8 + 334354*x^9 + 3559310*x^10 + 39838760*x^11 + 465743720*x^12 + 5658983108*x^13 + 71191948512*x^14 + 924554859776*x^15 + 12365546196641*x^16 +...
such that A( 2*x - A(x) ) = 2*x - A(x) + x^2.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x, V=[1, 1]); for(i=1, n, V = concat(V, 0); A=x*Ser(V); V[#V] = Vec( subst(G=A, x, 2*x - A) )[#V]/(-1) ); V[n]}
    for(n=1,30,print1(a(n),", "))
Showing 1-2 of 2 results.