cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292838 Number of sets of nonempty words with a total of n letters over quaternary alphabet.

Original entry on oeis.org

1, 4, 22, 132, 729, 4000, 21488, 113760, 594548, 3073392, 15732936, 79846448, 402104884, 2010879968, 9992425872, 49366096352, 242584319710, 1186177166680, 5773569726884, 27982357252632, 135079969593838, 649640609539360, 3113354757088720, 14871179093155424
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2017

Keywords

Crossrefs

Column k=4 of A292804.

Programs

  • Maple
    h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(h(n-i*j, i-1)*binomial(4^i, j), j=0..n/i)))
        end:
    a:= n-> h(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    h[n_, i_] := h[n, i] = If[n == 0, 1, If[i < 1, 0,
        Sum[h[n - i j,  i - 1] Binomial[4^i, j], {j, 0, n/i}]]];
    a[n_] := h[n, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 30 2020, after Alois P. Heinz *)

Formula

G.f.: Product_{j>=1} (1+x^j)^(4^j).
a(n) ~ 4^n * exp(2*sqrt(n) - 1/2 - c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} (-1)^m/(m*(4^(m-1)-1)) = 0.147762663788961720137665013823002812172... - Vaclav Kotesovec, Sep 28 2017