A292846 Numbers k such that 11 iterations of 'Reverse and Subtract' lead to k, whereas fewer than 11 iterations do not lead to k.
166425621223026859056339052269787863565428, 192910929628537040766341860254183960991698, 307567270506730945853551459962385036145286, 311906350108036145286307567270199935391877
Offset: 1
Examples
166425621223026859056339052269787863565428 -> 658139747564935391877311906350534262959233 -> 325180485129881782763533712811068515027377 -> 448540030730236434571833574377853069054146 -> 192910929628537040766341860254183960991698 -> 703288139752915027377325180481642968027593 -> 307567270506730945853551459962385036145286 -> 374974360076539008301807089075220036620417 -> 339052269946031972406296711860450026859056 -> 311906350108036145286307567270199935391877 -> 466287189883036620417374974360601118217236 -> 166425621223026859056339052269787863565428.
Links
- Ray Chandler, Table of n, a(n) for n = 1..11
- J. H. E. Cohn, Palindromic differences, Fibonacci Quart. 28 (1990), no. 2, 113-120.
Crossrefs
Formula
n = f^11(n), n <> f^k(n) for k < 11, where f: x -> |x - reverse(x)|.
Extensions
Terms corrected by Ray Chandler, Sep 27 2017
Comments