cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292847 a(n) is the smallest odd prime of the form ((1 + sqrt(2*n))^k - (1 - sqrt(2*n))^k)/(2*sqrt(2*n)).

Original entry on oeis.org

5, 7, 101, 11, 13, 269, 17, 19, 509, 23, 709, 821, 29, 31, 46957, 55399, 37, 168846239, 41, 43, 9177868096974864412935432937651459122761, 47, 485329129, 2789, 53, 3229, 3461, 59, 61, 1563353111, 139237612541, 67, 5021, 71, 73, 484639, 6221, 79, 6869, 83, 7549
Offset: 1

Views

Author

XU Pingya, Sep 24 2017

Keywords

Examples

			For k = {1, 2, 3, 4, 5}, ((1 + sqrt(6))^k - (1 - sqrt(6))^k)/(2*sqrt(6)) = {1, 2, 9, 28, 101}. 101 is odd prime, so a(3) = 101.
		

Crossrefs

Programs

  • Mathematica
    g[n_, k_] := ((1 + Sqrt[n])^k - (1 - Sqrt[n])^k)/(2Sqrt[n]);
    Table[k = 3; While[! PrimeQ[Expand@g[2n, k]], k++]; Expand@g[2n, k], {n, 41}]
  • PARI
    g(n,k) = ([0,1;2*n-1,2]^k*[0;1])[1,1]
    a(n) = for(k=3,oo,if(ispseudoprime(g(n,k)),return(g(n,k)))) \\ Jason Yuen, Apr 12 2025

Formula

When 2*n + 3 = p is prime, a(n) = p.