A292847 a(n) is the smallest odd prime of the form ((1 + sqrt(2*n))^k - (1 - sqrt(2*n))^k)/(2*sqrt(2*n)).
5, 7, 101, 11, 13, 269, 17, 19, 509, 23, 709, 821, 29, 31, 46957, 55399, 37, 168846239, 41, 43, 9177868096974864412935432937651459122761, 47, 485329129, 2789, 53, 3229, 3461, 59, 61, 1563353111, 139237612541, 67, 5021, 71, 73, 484639, 6221, 79, 6869, 83, 7549
Offset: 1
Keywords
Examples
For k = {1, 2, 3, 4, 5}, ((1 + sqrt(6))^k - (1 - sqrt(6))^k)/(2*sqrt(6)) = {1, 2, 9, 28, 101}. 101 is odd prime, so a(3) = 101.
Crossrefs
Programs
-
Mathematica
g[n_, k_] := ((1 + Sqrt[n])^k - (1 - Sqrt[n])^k)/(2Sqrt[n]); Table[k = 3; While[! PrimeQ[Expand@g[2n, k]], k++]; Expand@g[2n, k], {n, 41}]
-
PARI
g(n,k) = ([0,1;2*n-1,2]^k*[0;1])[1,1] a(n) = for(k=3,oo,if(ispseudoprime(g(n,k)),return(g(n,k)))) \\ Jason Yuen, Apr 12 2025
Formula
When 2*n + 3 = p is prime, a(n) = p.