A292848 a(n) is the smallest prime of form (1/2)*((1 + sqrt(2*n))^k + (1 - sqrt(2*n))^k).
3, 5, 7, 113, 11, 13, 43, 17, 19, 61, 23, 73, 79, 29, 31, 97, 103, 37, 1241463763, 41, 43, 664973, 47, 2593, 151, 53, 163, 14972833, 59, 61, 4217, 193, 67, 23801, 71, 73, 223, 229, 79, 241, 83, 7561, 61068909859, 89, 271, 277, 283, 97, 10193, 101, 103, 313
Offset: 1
Keywords
Examples
For k = {1, 2, 3, 4}, (1/2)((1 + sqrt(8))^k + (1 - sqrt(8))^k) = {1, 9, 25, 113}. 113 is prime, so a(4) = 113.
Links
- Robert Israel, Table of n, a(n) for n = 1..306
Crossrefs
Programs
-
Maple
f:= proc(n) local a,b,t; a:= 1; b:= 1; do t:= a; a:= 2*a + (2*n-1)*b; if isprime(a) then return a fi; b:= t; od end proc: map(f, [$1..100]); # Robert Israel, Sep 26 2017
-
Mathematica
f[n_, k_] := ((1 + Sqrt[n])^k + (1 - Sqrt[n])^k)/2; Table[k = 1; While[! PrimeQ[Expand@f[2n, k]], k++]; Expand@f[2n, k], {n, 52}]
Comments