A292855 Expansion of 1/(1 - x - 2*x^2/(1 - 3*x^3 - 4*x^4/(1 - 5*x^5 - 6*x^6/(1 - 7*x^7 - 8*x^8/(1 - ...))))), a continued fraction.
1, 1, 3, 5, 11, 27, 63, 143, 341, 799, 1865, 4417, 10401, 24433, 57619, 135749, 319683, 753427, 1775207, 4182359, 9855389, 23222687, 54718921, 128937361, 303821873, 715906625, 1686933723, 3975020013, 9366551195, 22070960907, 52007117407, 122547413479, 288765804957, 680436157615
Offset: 0
Keywords
Programs
-
Mathematica
nmax = 33; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-2 k x^(2 k), 1 - (2 k + 1) x^(2 k + 1), {k, 1, nmax}]), {x, 0, nmax}], x]
Formula
a(n) ~ c * d^n, where d = 2.35636016857596143712421472862749989350673596686819... and c = 0.353844135039289092297842723019941866883167102736... - Vaclav Kotesovec, Sep 25 2017