A292857 Numbers k such that 8 applications of 'Reverse and Subtract' lead to k, whereas fewer than 8 applications do not lead to k.
16914079504181797053273763831171860502859028, 16914099886383117186009041817970531210859028, 31253512653248719266062943707325665377464777, 31253591994370732566027032487192660079464777
Offset: 1
Examples
16914079504181797053273763831171860502859028 -> 65181741002635316783463471248546280094182933 -> 31253591994370732566027032487192660079464777 -> 46492905012258445857045034036514689840070436 -> 16914099886383117186009041817970531210859028 -> 65181701327124854628081026353167837688182933 -> 31253512653248719266062943707325665377464777 -> 46492964703403651468863122584458570244070436 -> 16914079504181797053273763831171860502859028
Links
- Ray Chandler, Table of n, a(n) for n = 1..8
- J. H. E. Cohn, Palindromic differences, Fibonacci Quart. 28 (1990), no. 2, 113-120.
Crossrefs
Formula
n = f^8(n), n <> f^k(n) for k < 8, where f: x -> |x - reverse(x)|.
Extensions
Terms ordered by Ray Chandler, Sep 27 2017
Comments