A292858 Numbers k such that 9 applications of 'Reverse and Subtract' lead to k, whereas fewer than 9 applications do not lead to k.
111603518721165960373027269626940447783074704878, 176512193475025275151977319848516480415708873428, 230594281653466673786238177213613424643828503868, 305623327188018690392981819607012089228265673497
Offset: 1
Examples
111603518721165960373027269626940447783074704878 -> 766803951666578089253935450746129113344740601233 -> 434697904223266167606880911393148237678581292566 -> 230594281653466673786238177213613424643828503868 -> 637711546692957642526533655473763239712353991164 -> 176512193475025275151977319848516480415708873428 -> 647866614039059340696936459303056040158682342243 -> 305623327188018690392981819607012089228265673497 -> 488753235634961520313936369686084721653457653006 -> 111603518721165960373027269626940447783074704878
Links
- Ray Chandler, Table of n, a(n) for n = 1..9
- J. H. E. Cohn, Palindromic differences, Fibonacci Quart. 28 (1990), no. 2, 113-120.
Crossrefs
Formula
n = f^9(n), n <> f^k(n) for k < 9, where f: x -> |x - reverse(x)|.
Extensions
Terms ordered by Ray Chandler, Sep 27 2017
Comments