A307488 G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} mu(k)^2*x^k*A(x)^k/(1 - x^k*A(x)^k)^2, where mu() is the Möbius function (A008683).
1, 1, 4, 14, 59, 257, 1185, 5609, 27259, 134911, 678252, 3452924, 17767047, 92248717, 482710548, 2543031236, 13477141627, 71800541745, 384320284096, 2065782153388, 11146084675905, 60346599617759, 327749929622743, 1785153353416807, 9748766110978057, 53367282644562541
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 4*x^2 + 14*x^3 + 59*x^4 + 257*x^5 + 1185*x^6 + 5609*x^7 + 27259*x^8 + 134911*x^9 + 678252*x^10 + ...
Programs
-
Mathematica
terms = 26; CoefficientList[1/x InverseSeries[Series[x/(1 + Sum[DirichletConvolve[i, MoebiusMu[i]^2, i, k] x^k, {k, 1, terms}]), {x, 0, terms}], x], x] terms = 26; A[] = 0; Do[A[x] = 1 + Sum[MoebiusMu[k]^2 x^k A[x]^k/(1 - x^k A[x]^k)^2, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x] terms = 26; A[] = 0; Do[A[x] = 1 + Sum[DirichletConvolve[i, MoebiusMu[i]^2, i, k] x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
Formula
G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} psi(k)*x^k*A(x)^k, where psi() is the Dedekind psi function (A001615).
G.f.: A(x) = (1/x)*Series_Reversion(x/(1 + Sum_{k>=1} psi(k)*x^k)).