A292888 Decimal expansion of Product_{k>=1} (1 - exp(-3*Pi*k)).
9, 9, 9, 9, 1, 9, 2, 9, 3, 9, 7, 0, 0, 1, 7, 5, 5, 9, 3, 2, 4, 2, 8, 2, 6, 5, 5, 3, 2, 0, 3, 2, 2, 8, 8, 4, 6, 9, 8, 3, 4, 9, 2, 8, 0, 3, 1, 7, 2, 7, 7, 0, 3, 1, 5, 3, 2, 3, 1, 9, 2, 8, 4, 1, 3, 6, 6, 5, 7, 0, 0, 1, 7, 0, 6, 5, 2, 6, 3, 1, 3, 2, 0, 9, 3, 3, 4, 8, 9, 7, 2, 3, 7, 7, 7, 7, 1, 0, 3, 7, 5, 5, 1, 9, 6, 3
Offset: 0
Examples
0.999919293970017559324282655320322884698349280317277031532319284136657...
Links
- Eric Weisstein's World of Mathematics, Dedekind Eta Function
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
- Wikipedia, Dedekind eta function
- Wikipedia, Euler function
Programs
-
Mathematica
RealDigits[(5 - Sqrt[3] + Sqrt[2]*3^(3/4))^(1/6) * E^(Pi/8) * Gamma[1/4] / (2^(25/24)*3^(3/8)*Pi^(3/4)), 10, 120][[1]] RealDigits[QPochhammer[E^(-3*Pi)], 10, 120][[1]]
-
PARI
(5 - sqrt(3) + sqrt(2)*3^(3/4))^(1/6) * exp(Pi/8) * gamma(1/4) / 2^(25/24) / 3^(3/8) / Pi^(3/4) \\ Charles R Greathouse IV, Sep 02 2024
Formula
Equals (5 - sqrt(3) + sqrt(2)*3^(3/4))^(1/6) * exp(Pi/8) * Gamma(1/4) / (2^(25/24) * 3^(3/8) * Pi^(3/4)).