cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A259149 Decimal expansion of phi(exp(-2*Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

9, 9, 8, 1, 2, 9, 0, 6, 9, 9, 2, 5, 9, 5, 8, 5, 1, 3, 2, 7, 9, 9, 6, 2, 3, 2, 2, 2, 4, 5, 2, 7, 3, 8, 7, 8, 1, 3, 0, 7, 3, 8, 4, 3, 5, 3, 6, 5, 8, 1, 6, 4, 6, 1, 7, 5, 4, 0, 7, 8, 1, 4, 0, 2, 8, 2, 9, 9, 8, 5, 8, 0, 4, 6, 6, 0, 1, 9, 2, 8, 0, 7, 3, 5, 7, 1, 8, 2, 4, 4, 7, 3, 8, 7, 7, 7, 3, 7, 9, 3, 7, 7, 1, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.99812906992595851327996232224527387813073843536581646175407814028299858...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259148 phi(exp(-Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-2Pi]], 10, 104] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-2*Pi)) = exp(Pi/12)*Gamma(1/4)/(2*Pi^(3/4)).

A259148 Decimal expansion of phi(exp(-Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

9, 5, 4, 9, 1, 8, 7, 8, 9, 9, 8, 7, 6, 7, 4, 1, 0, 3, 7, 5, 1, 2, 3, 3, 9, 7, 8, 1, 1, 0, 2, 9, 1, 0, 7, 7, 6, 3, 2, 7, 1, 5, 3, 7, 3, 8, 0, 7, 8, 0, 5, 2, 8, 3, 1, 4, 8, 7, 9, 9, 1, 9, 1, 6, 7, 6, 0, 9, 4, 0, 3, 5, 6, 8, 6, 7, 1, 4, 5, 3, 9, 5, 3, 4, 9, 8, 1, 5, 1, 8, 6, 7, 4, 4, 6, 1, 0, 9, 8, 7, 6, 7, 4, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.954918789987674103751233978110291077632715373807805283148799191676094...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-Pi]], 10, 104] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-Pi)) = exp(Pi/24)*Gamma(1/4)/(2^(7/8)*Pi^(3/4)).
Equals 1/exp(A255695). - Hugo Pfoertner, May 28 2025

A259150 Decimal expansion of phi(exp(-4*Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

9, 9, 9, 9, 9, 6, 5, 1, 2, 6, 4, 5, 4, 8, 2, 2, 3, 4, 2, 9, 5, 0, 9, 8, 9, 1, 6, 8, 5, 2, 1, 1, 9, 2, 4, 7, 6, 5, 7, 5, 0, 9, 7, 8, 9, 3, 2, 6, 3, 4, 5, 8, 4, 8, 4, 4, 7, 7, 3, 2, 6, 9, 1, 0, 0, 4, 7, 2, 0, 1, 5, 2, 5, 7, 6, 7, 4, 4, 8, 2, 0, 3, 2, 6, 8, 9, 6, 2, 4, 9, 7, 3, 0, 1, 1, 9, 7, 2, 8, 1, 0, 8, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.99999651264548223429509891685211924765750978932634584844773269100472...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-4*Pi]], 10, 103] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-4*Pi)) = exp(Pi/6)*Gamma(1/4)/(2^(11/8)*Pi^(3/4)).
A259150 = A259148 * exp(Pi/8)/sqrt(2). - Vaclav Kotesovec, Jul 03 2017

A259151 Decimal expansion of phi(exp(-8*Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 7, 8, 3, 8, 4, 4, 3, 2, 9, 0, 4, 4, 2, 7, 8, 8, 1, 4, 0, 9, 9, 8, 2, 7, 0, 9, 5, 9, 4, 8, 6, 9, 4, 5, 6, 7, 3, 8, 5, 2, 1, 9, 8, 5, 4, 3, 8, 7, 2, 7, 2, 5, 5, 8, 3, 6, 9, 9, 1, 5, 5, 2, 6, 6, 6, 2, 6, 9, 2, 7, 0, 0, 5, 5, 6, 6, 7, 5, 0, 6, 5, 2, 1, 7, 6, 4, 9, 3, 2, 7, 9, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.999999999987838443290442788140998270959486945673852198543872725583699...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-8*Pi]], 10, 103] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-8*Pi)) = (sqrt(2) - 1)^(1/4)*exp(Pi/3)*(Gamma(1/4)/(2^(29/16)*Pi^(3/4))).
A259151 = A259147 * exp(5*Pi/16)/2. - Vaclav Kotesovec, Jul 03 2017

A292905 Decimal expansion of Product_{k>=1} (1 - exp(-5*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 8, 4, 9, 2, 9, 8, 2, 4, 9, 7, 4, 9, 9, 8, 2, 8, 5, 5, 6, 8, 4, 2, 4, 9, 9, 5, 1, 3, 3, 7, 1, 9, 2, 2, 2, 6, 2, 8, 0, 4, 9, 5, 9, 7, 2, 1, 7, 4, 4, 6, 6, 5, 1, 8, 6, 8, 0, 3, 2, 6, 2, 7, 2, 7, 4, 1, 0, 7, 3, 2, 4, 0, 8, 7, 9, 4, 4, 8, 6, 1, 9, 6, 2, 3, 9, 8, 4, 2, 7, 3, 6, 9, 2, 7, 8, 5, 0, 4, 3, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 26 2017

Keywords

Examples

			0.999999849298249749982855684249951337192226280495972174466518680326272...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[E^(-5*Pi)], 10, 120][[1]]
    RealDigits[E^(5*Pi/8) * Gamma[1/4] * (9 + 4*Sqrt[5])^(1/4) * (-E^(5*Pi/2) + Sqrt[E^(5*Pi) + 64*r^24])^(1/4) / (2^(7/4) * Sqrt[5] * Pi^(3/4) * r^5)/.r -> (r/.FindRoot[2^(3/4)*r^6 + 2^(17/8)*E^(5*Pi/24)*r^5 + 2^(5/8)*E^(25*Pi/24)*r - E^(5*Pi/4) == 0, {r, 1}, WorkingPrecision -> 130]), 10, 120][[1]]
    RealDigits[E^(5*Pi/24) * Gamma[1/4]*(7 + 3*Sqrt[5] + 12*Sqrt[14*Sqrt[5] - 30])^(1/8) / (2*Sqrt[5]*Pi^(3/4)), 10, 120][[1]] (* Vaclav Kotesovec, May 13 2023 *)

Formula

Equals exp(5*Pi/8) * Gamma(1/4) * (9 + 4*sqrt(5))^(1/4) * (-exp(5*Pi/2) + sqrt(exp(5*Pi) + 64*r^24))^(1/4) / (2^(7/4) * sqrt(5) * Pi^(3/4) * r^5), where r = A292904 = 1.00000015070175025002398949386987146797376100643050740569...
Equals exp(5*Pi/24) * Gamma(1/4) * (7 + 3*sqrt(5) + 12*sqrt(14*sqrt(5) - 30))^(1/8) / (2*sqrt(5)*Pi^(3/4)). - Vaclav Kotesovec, May 13 2023

A363018 Decimal expansion of Product_{k>=1} (1 - exp(-6*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 3, 4, 8, 7, 5, 8, 7, 8, 2, 1, 5, 0, 8, 5, 8, 7, 4, 4, 1, 6, 2, 7, 0, 6, 1, 2, 4, 3, 1, 0, 8, 3, 3, 0, 5, 0, 8, 1, 3, 6, 0, 9, 7, 2, 3, 6, 6, 2, 0, 8, 7, 0, 2, 3, 9, 0, 6, 6, 2, 3, 9, 9, 5, 9, 4, 1, 5, 9, 1, 8, 8, 8, 6, 5, 1, 9, 7, 6, 6, 3, 5, 5, 9, 6, 5, 6, 8, 6, 9, 2, 9, 8, 1, 8, 2, 8, 4, 1
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2023

Keywords

Examples

			0.999999993487587821508587441627061243108330508136097236620870239066239...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[E^(Pi/4)*Gamma[1/4]*(2 - Sqrt[3])^(1/12)/(2*3^(3/8)*Pi^(3/4)), 10, 120][[1]]
    RealDigits[QPochhammer[E^(-6*Pi)], 10, 120][[1]]

Formula

Equals exp(Pi/4) * Gamma(1/4) * (2 - sqrt(3))^(1/12) / (2 * 3^(3/8) * Pi^(3/4)).
Equals A292888 * A292887.

A363019 Decimal expansion of Product_{k>=1} (1 - exp(-10*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 2, 8, 8, 9, 8, 9, 3, 1, 6, 7, 5, 8, 5, 4, 5, 8, 2, 3, 2, 0, 0, 9, 9, 3, 3, 2, 5, 0, 2, 9, 4, 8, 2, 7, 0, 7, 0, 6, 7, 4, 1, 3, 2, 0, 5, 4, 5, 3, 3, 6, 2, 9, 9, 5, 3, 9, 3, 6, 4, 0, 1, 3, 8, 4, 1, 9, 7, 2, 4, 3, 0, 5, 3, 4, 8, 2, 3, 7, 3, 4, 5, 6, 9, 4, 5, 3, 8, 7, 7, 7, 0
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2023

Keywords

Examples

			0.999999999999977288989316758545823200993325029482707067413205453362995...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[E^(5*Pi/12)*Gamma[5/4]*Sqrt[2*(Sqrt[5] - 1)/5]/Pi^(3/4), 10, 120][[1]]
    RealDigits[QPochhammer[E^(-10*Pi)], 10, 120][[1]]

Formula

Equals exp(5*Pi/12) * Gamma(5/4) * sqrt(2*(sqrt(5) - 1)/5) / Pi^(3/4).
Equals A292905 * A292904.

A363020 Decimal expansion of Product_{k>=1} (1 - exp(-12*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 5, 7, 5, 8, 8, 4, 8, 8, 1, 6, 9, 8, 3, 9, 2, 2, 2, 7, 6, 1, 0, 8, 9, 0, 2, 0, 2, 2, 0, 5, 5, 9, 6, 6, 9, 3, 6, 2, 7, 2, 7, 6, 0, 8, 3, 7, 0, 5, 2, 5, 0, 3, 7, 2, 4, 8, 2, 7, 2, 4, 8, 8, 7, 7, 0, 1, 0, 8, 7, 3, 5, 5, 4, 7, 3, 8, 9, 0, 7, 7, 7, 2, 9, 6, 8, 0, 6, 1, 8, 0
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2023

Keywords

Examples

			0.999999999999999957588488169839222761089020220559669362727608370525037...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[E^(Pi/2) * Gamma[1/4] * (7 + 28*Sqrt[3] - 2*Sqrt[6*(-684 + 469*Sqrt[3])])^(1/24) / (2^(11/8)*3^(3/8)*Pi^(3/4)), 10, 120][[1]]
    RealDigits[QPochhammer[E^(-12*Pi)], 10, 120][[1]]

Formula

Equals exp(Pi/2) * Gamma(1/4) * (7 + 28*sqrt(3) - 2*sqrt(6*(469*sqrt(3) - 684)))^(1/24) / (2^(11/8) * 3^(3/8) * Pi^(3/4)).

A363021 Decimal expansion of Product_{k>=1} (1 - exp(-20*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 4, 8, 4, 2, 0, 9, 9, 9, 3, 7, 4, 5, 7, 1, 5, 9, 6, 4, 9, 5, 8, 1, 5, 1, 9, 7, 7, 1, 1, 2, 7, 1, 1, 6, 2, 5, 1, 0, 2, 3, 6, 9, 0, 9, 9, 7, 4, 0, 3, 2, 0, 3, 2, 0, 0, 1, 4, 5, 0, 8, 1, 5, 0, 6, 5, 4, 3, 1, 7, 6, 9, 1, 7, 9, 9, 9, 4, 9, 7
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2023

Keywords

Examples

			0.999999999999999999999999999484209993745715964958151977112711625102369...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)).

Programs

  • Mathematica
    RealDigits[E^(5*Pi/6) * Gamma[1/4] * (5^(1/4) - 1) * Sqrt[(Sqrt[5] - 1)/5] / (2^(19/8)*Pi^(3/4)), 10, 120][[1]]
    RealDigits[QPochhammer[E^(-20*Pi)], 10, 120][[1]]

Formula

Equals exp(5*Pi/6) * Gamma(1/4) * (5^(1/4) - 1) * sqrt((sqrt(5) - 1)/5) / (2^(19/8) * Pi^(3/4)).

A363117 Decimal expansion of Product_{k>=1} (1 - exp(-7*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 1, 8, 5, 7, 3, 1, 5, 4, 1, 7, 2, 2, 4, 3, 6, 5, 8, 3, 8, 2, 9, 0, 1, 2, 3, 6, 4, 6, 2, 9, 1, 9, 5, 6, 0, 2, 5, 7, 0, 7, 6, 4, 9, 0, 2, 9, 8, 1, 2, 2, 0, 8, 6, 1, 0, 0, 1, 1, 7, 6, 6, 9, 4, 5, 4, 3, 5, 0, 1, 4, 7, 6, 7, 0, 9, 9, 1, 9, 7, 6, 5, 2, 7, 6, 7, 7, 8, 9, 3, 4, 4, 1, 7, 5, 6, 3
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2023

Keywords

Examples

			0.999999999718573154172243658382901236462919560257076490298122086100117...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[E^(7*Pi/24) * Gamma[1/4] * ((Sqrt[5 - Sqrt[7]] - Sqrt[3*Sqrt[7] - 7]) * (2^(1/4) * Sqrt[5 + Sqrt[7]] + (56 + 23*Sqrt[7])^(1/4)))^(1/4) / (2^(19/16) * 7^(7/16) * Pi^(3/4)), 10, 120][[1]]
    RealDigits[QPochhammer[E^(-7*Pi)], 10, 120][[1]]

Formula

Equals exp(7*Pi/24) * Gamma(1/4) * ((sqrt(5 - sqrt(7)) - sqrt(3*sqrt(7) - 7)) * (2^(1/4) * sqrt(5 + sqrt(7)) + (56 + 23*sqrt(7))^(1/4)))^(1/4) / (2^(19/16) * 7^(7/16) * Pi^(3/4)).
Showing 1-10 of 20 results. Next