cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292911 Numbers n such that A291897(n) is divisible by (2*n-1)^3.

Original entry on oeis.org

1, 3, 7, 9, 15, 19, 21, 27, 31, 37, 45, 49, 51, 55, 57, 69, 75, 79, 87, 91, 97, 99, 115, 117, 121, 129, 135, 139, 141, 147, 157, 159, 169, 175, 177, 187, 195, 199, 201, 205, 211, 217, 225, 229, 231, 255, 261, 271, 279, 285, 289, 297, 301, 307, 309, 321, 327
Offset: 1

Views

Author

Vladimir Shevelev, Sep 26 2017

Keywords

Comments

Conjecture: Every prime of the form 4*k+1 (A002144) is contained in the sequence {2*a(n)-1}.
The author's former conjecture that, for n>=2 the numbers {2*a(n)-1} are consecutive primes of the form 4*k+1, was disproved at n = 553 by Peter J. C. Moses. (553*2 - 1 = 1105 is the smallest term which is a product of three distinct (4*k+1)-primes). - Vladimir Shevelev, Sep 27 2017
553 is also (after 1) the smallest number which is missing from A119681 but is present here. - R. J. Mathar, Sep 29 2017

Crossrefs

Programs

  • Mathematica
    Select[Array[{2^IntegerExponent[2 #, 2] EulerE[2 # - 1, #], #} &, 330], Divisible[#1, (2 #2 - 1)^3] & @@ # &][[All, -1]] (* Michael De Vlieger, Sep 27 2017, after Peter Luschny at A291897 *)

Formula

If the conjecture is true, then for n>=2, a(n) <= (A002144(n-1) + 1)/2 (the equality holds up to 90).

Extensions

More terms from Peter J. C. Moses, Sep 26 2017