A292936 a(n) = the least k >= 0 such that floor(n/(2^k)) is a nonprime; a(n) is degree of the "safeness" of prime, 0 if n is not a prime, 1 for unsafe primes (A059456), and k >= 2 for primes that are (k-1)-safe but not k-safe.
0, 1, 1, 0, 2, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Maple
A292936 := proc(n) for k from 0 do if not isprime(floor(n/2^k)) then return k; end if; end do: end proc: seq(A292936(n),n=1..100) ; # R. J. Mathar, Sep 28 2017
-
Mathematica
Table[SelectFirst[Range[0, 10], ! PrimeQ@ Floor[n/(2^#)] &], {n, 105}] (* Michael De Vlieger, Sep 29 2017 *)
-
PARI
A292936(n) = { my(k=0); while(isprime(n), n >>= 1; k++); k; };
-
Scheme
(define (A292936 n) (A007814 (1+ (A292599 n))))
Comments