A292941 a(1) = 0, a(2) = 1, and for n > 2, a(n) = 2*a(A252463(n)) + [n == 1 (mod 6)].
0, 1, 2, 2, 4, 4, 9, 4, 4, 8, 18, 8, 37, 18, 8, 8, 74, 8, 149, 16, 16, 36, 298, 16, 9, 74, 8, 36, 596, 16, 1193, 16, 36, 148, 16, 16, 2387, 298, 72, 32, 4774, 32, 9549, 72, 16, 596, 19098, 32, 19, 18, 148, 148, 38196, 16, 33, 72, 296, 1192, 76392, 32, 152785, 2386, 32, 32, 72, 72, 305571, 296, 596, 32, 611142, 32, 1222285, 4774, 16, 596, 32
Offset: 1
Keywords
Links
Crossrefs
Programs
Formula
a(1) = 0, a(2) = 1, and for n > 2, a(n) = 2*a(A252463(n)) + [n == 1 (mod 6)], where the last part of the formula is Iverson bracket, giving 1 only if n is of the form 6k+1, and 0 otherwise.
Also, for n > 2, a(n) = 2*a(A252463(n)) + [n == 1 (mod 2)]*[J(-3|n) = 1], where J is the Jacobi-symbol.
Comments