cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292945 Base-2 expansion of a(n) encodes the steps where numbers of the form 6k+5 are encountered when map x -> A252463(x) is iterated down to 1, starting from x=n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 0, 0, 2, 5, 0, 10, 4, 0, 0, 21, 0, 42, 4, 4, 10, 85, 0, 0, 20, 0, 8, 171, 0, 342, 0, 8, 42, 1, 0, 684, 84, 20, 8, 1369, 8, 2738, 20, 0, 170, 5477, 0, 0, 0, 40, 40, 10955, 0, 8, 16, 84, 342, 21911, 0, 43822, 684, 8, 0, 17, 16, 87644, 84, 168, 2, 175289, 0, 350578, 1368, 0, 168, 3, 40, 701156, 16, 0, 2738, 1402313, 16, 40, 5476, 340, 40
Offset: 1

Views

Author

Antti Karttunen, Sep 28 2017

Keywords

Comments

The AND - XOR formulas are just a restatement of the fact that J(-3|n) = J(-1|n)*J(3|n), i.e., that Jacobi-symbol is multiplicative (also) with respect to its upper argument.

Crossrefs

Programs

  • Scheme
    (define (A292945 n) (if (<= n 1) 0 (+ (if (= 5 (modulo n 6)) 1 0) (* 2 (A292945 (A252463 n))))))

Formula

a(1) = 0, and for n > 1, a(n) = 2*a(A252463(n)) + [n == 5 (mod 6)], where the last part of the formula is Iverson bracket, giving 1 only if n is of the form 6k+5, and 0 otherwise.
Also, for n > 1, a(n) = 2*a(A252463(n)) + [n == 1 (mod 2)]*[J(-3|n) = -1], where J is the Jacobi-symbol.
a(n) = A292263(n) AND (A292255(n) XOR A292383(n)), where AND is bitwise-and (A004198) and XOR is bitwise-XOR (A003987).
a(n) = A292263(n) AND (A292253(n) XOR A292385(n)). [See comments.]
For n >= 0, a(A163511(n)) = A292946(n).
For n >= 1, A292941(n) + A292943(n) + a(n) = A243071(n).