cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292982 Bi-unitary abundant numbers: numbers n such that bsigma(n) > 2n, where bsigma is the sum of the bi-unitary divisors function (A188999).

Original entry on oeis.org

24, 30, 40, 42, 48, 54, 56, 66, 70, 72, 78, 80, 88, 96, 102, 104, 114, 120, 138, 150, 160, 162, 168, 174, 186, 192, 210, 216, 222, 224, 240, 246, 258, 264, 270, 280, 282, 288, 294, 312, 318, 320, 330, 336, 352, 354, 360, 366, 378, 384, 390, 402, 408, 416, 420
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2017

Keywords

Comments

Analogous to abundant numbers (A005101) with bi-unitary sigma (A188999) instead of sigma (A000203).

Examples

			24 is in the sequence since bsigma(24) = 60 > 2*24.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] :=
    DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bAbundantQ[n_] := bsigma[n] > 2 n; Select[Range[1000], bAbundantQ] (* after Michael De Vlieger at A188999 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    isok(n) = vecsum(biudivs(n)) > 2*n; \\ Michel Marcus, Dec 13 2017