A292985 Bi-unitary pseudoperfect numbers: numbers that are equal to the sum of a subset of their aliquot bi-unitary divisors.
6, 24, 30, 40, 42, 48, 54, 56, 60, 66, 72, 78, 80, 88, 90, 96, 102, 104, 114, 120, 138, 150, 160, 162, 168, 174, 186, 192, 210, 216, 222, 224, 240, 246, 258, 264, 270, 280, 282, 288, 294, 312, 318, 320, 330, 336, 352, 354, 360, 366, 378, 384, 390, 402, 408
Offset: 1
Keywords
Examples
48 is in the sequence since its bi-unitary divisors are 1, 2, 3, 6, 8, 16, 24, 48 and 48 = 8 + 16 + 24.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bdiv[m_] := Select[Divisors[m], Last@Intersection[f@#, f[m/#]] == 1 &]; a = {}; n = 0; While[n < 1000, n++; d = Most[bdiv[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[a, n]]];a (* after T. D. Noe at A005835 and Michael De Vlieger at A188999 *)
Comments