A292992 Numbers n such that 13 applications of 'Reverse and Subtract' lead to n, whereas fewer than 13 applications do not lead to n.
1195005230033599502088049947699664004979, 1381092199992389193086189078000076108069, 1417996648846699605185820033511533003948, 2845548027720844548271544519722791554517
Offset: 1
Examples
1195005230033599502088049947699664004979 -> 8598999439933899906714010005600661000932 -> 6208997779868899802537910022201311001974 -> 1417996648846699605185820033511533003948 -> 7075006702306600680629249932976933993193 -> 3161013305514201251368389866944857987486 -> 3686884278982488587263131157210175114127 -> 3527231431145022726364727685688549772736 -> 2845548027720844548271544519722791554517 -> 4309003944558309903456909960554416900965 -> 1381092199992389193086189078000076108069 -> 8226924500016320623717730754999836793762 -> 5552948110021750246544470518899782497534 -> 1195005230033599502088049947699664004979.
Links
- Ray Chandler, Table of n, a(n) for n = 1..13
- J. H. E. Cohn, Palindromic differences, Fibonacci Quart. 28 (1990), no. 2, 113-120.
Crossrefs
Formula
n = f^13(n), n <> f^k(n) for k < 13, where f: x -> |x - reverse(x)|.
Comments