A292999 Triangle read by rows: T(n,k) (n >= 1, 4 <= k <= n+3) is the number of k-sequences of balls colored with at most n colors such that exactly four balls are the same color as some other ball in the sequence.
1, 8, 10, 21, 120, 90, 40, 420, 1440, 840, 65, 1000, 6300, 16800, 8400, 96, 1950, 18000, 88200, 201600, 90720, 133, 3360, 40950, 294000, 1234800, 2540160, 1058400, 176, 5320, 80640, 764400, 4704000, 17781120, 33868800, 13305600, 225, 7920, 143640, 1693440, 13759200, 76204800, 266716800, 479001600, 179625600
Offset: 1
Examples
For n=1: AAAA -> T(1,4)=1. For n=2: AAAA,BBBB,AABB,ABAB,ABBA,BAAB,BABA,BBAA -> T(2,4)=8; AAAAB,AAABA,AABAA,ABAAA,BAAAA,BBBBA,BBBAB,BBABB,BABBB,ABBBB -> T(2,5)=10. Triangle starts: 1; 8, 10; 21, 120, 90; 40, 420, 1440, 840; 65, 1000, 6300, 16800, 8400; 96, 1950, 18000, 88200, 201600, 90720; 133, 3360, 40950, 294000, 1234800, 2540160, 1058400; 176, 5320, 80640, 764400, 4704000, 17781120, 33868800, 13305600; 225, 7920, 143640, 1693440, 13759200, 76204800, 266716800, ... .
Crossrefs
Programs
-
Mathematica
Table[Binomial[k, 4] n! (1/(n + 3 - k)! + 3/(n + 2 - k)!), {n, 9}, {k, 4, n + 3}] // Flatten (* Michael De Vlieger, Sep 30 2017 *)
Formula
a(n) = binomial(k,4)*n!*(1/(n+3-k)! + 3/(n+2-k)!) (with the convention that 3/(-1)! = 0 when k=n+3).