cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293048 Primes of the form 2^q * 3^r * 11^s + 1.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 23, 37, 67, 73, 89, 97, 109, 163, 193, 199, 257, 353, 397, 433, 487, 577, 727, 769, 1153, 1297, 1409, 1453, 1459, 1783, 2113, 2179, 2377, 2593, 2663, 2917, 3169, 3457, 3889, 4357, 5347, 6337, 7129, 8713, 10369, 11617, 12289, 15973, 17497, 18433, 19009, 19603
Offset: 1

Views

Author

Muniru A Asiru, Sep 29 2017

Keywords

Comments

Fermat prime exponents q occur in the case when q = 0, 1, 2, 4, 8, 16.

Examples

			2 = a(1) = 2^0 * 3^0 * 11^0 + 1.
13 = a(5) = 2^2 * 3^1 * 11^0 + 1 = 13.
list of (q, r, s): (0, 0, 0), (1, 0, 0), (2, 0, 0), (1, 1, 0), (2, 1, 0), (4, 0, 0), (1, 2, 0), (2, 0, 1), (2, 2, 0), (1, 1, 1), ...
		

Crossrefs

Cf. Sequences of primes of the form 2^q * 3^r * b^s + 1: A002200 (b = 5), A293008 (b = 7).

Programs

  • GAP
    K:=10^5+1;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;    I:=[3,11];;
    B:=List(A,i->Elements(Factors(i-1)));;
    C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));;
    A293048:=Concatenation([2],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
  • Mathematica
    With[{n = 20000}, Union@ Select[Flatten@ Table[2^p1*3^p2*11^p5 + 1, {p1, 0, Log[2, n/(1)]}, {p2, 0, Log[3, n/(2^p1)]}, {p5, 0, Log[11, n/(2^p1*3^p2)]}], PrimeQ]] (* Michael De Vlieger, Sep 30 2017 *)