A293051 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{i=0..k} x^i/i! - exp(x)).
1, 1, -1, 1, 0, 0, 1, 0, -1, 1, 1, 0, 0, -1, 1, 1, 0, 0, -1, 2, -2, 1, 0, 0, 0, -1, 9, -9, 1, 0, 0, 0, -1, -1, 9, -9, 1, 0, 0, 0, 0, -1, 9, -50, 50, 1, 0, 0, 0, 0, -1, -1, 34, -267, 267, 1, 0, 0, 0, 0, 0, -1, -1, 90, -413, 413, 1, 0, 0, 0, 0, 0, -1, -1, 34, -71
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... -1, 0, 0, 0, 0, ... 0, -1, 0, 0, 0, ... 1, -1, -1, 0, 0, ... 1, 2, -1, -1, 0, ... -2, 9, -1, -1, -1, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
E.g.f. of column k: Product_{i>k} exp(-x^i/i!).
A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = - Sum_{i=k..n-1} binomial(n-1,i)*A(n-1-i,k) for n > k.