A293059 Numbers k such that sigma(phi(k))/k > sigma(phi(m))/m for all m < k, where sigma is the sum of divisors function (A000203) and phi is Euler's totient function (A000010).
1, 5, 7, 13, 31, 37, 61, 181, 241, 421, 899, 1321, 1333, 1763, 2161, 2521, 5183, 7561, 12601, 15121, 28187, 30241, 55441, 110881, 167137, 278263, 332641, 555911, 666917, 722473, 1443853, 2165407, 3607403, 4324321, 7212581, 8654539, 10817761, 21631147, 36768847
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..55
- Leon Alaoglu and Paul Erdős, A conjecture in elementary number theory, Bulletin of the American Mathematical Society, Vol. 50, No. 12 (1944), pp. 881-882.
- Florian Luca and Carl Pomerance, On some problems of Makowski-Schinzel and Erdős concerning the arithmetical functions phi and sigma, Colloquium Mathematicae, Vol. 92, No. 1 (2002), pp. 111-130.
Programs
-
Mathematica
a={}; rm=0; Do[r = DivisorSigma[1, EulerPhi[n]]/n; If[r>rm, rm=r; AppendTo[a,n]],{n,1,100000}]; a
-
PARI
lista(nn) = {my(rmax = 0); for (n=1, nn, if ((r=sigma(eulerphi(n))/n) > rmax, rmax = r; print1(n, ", ")););} \\ Michel Marcus, Oct 18 2017
Comments