A293061 Triangle read by rows (n >= 0, 0 <= k <= n): T(n,k) = number of k-dimensional subperiodic groups in n-dimensional space, counting enantiomorphs.
1, 2, 2, 10, 7, 17, 32, 75, 80, 230, 271, 343, 1091, 1594, 4894, 955
Offset: 0
Examples
The triangle begins: 1; 2, 2; 10, 7, 17; 32, 75, 80, 230; 271, 343, 1091, 1594, 4894; 955, ...
Links
- M. I. Aroyo et al, Bilbao Crystallographic Server
- International Union of Crystallography, International Tables for Crystallography, volumes A and E.
- A. F. Palistrant, Complete scheme of four-dimensional crystallographic symmetry groups, Crystallography Reports, 57 (2012), 471-477.
- W. Plesken and T. Schulz, CARAT Homepage
- W. Plesken and T. Schulz, CARAT Homepage [Cached copy in pdf format (without subsidiary pages), with permission]
- B. Souvignier, The four-dimensional magnetic point and space groups, Z. Kristallogr., 221 (2006), 77-82.
- Wikipedia: Space group, Crystallographic point group, Line group, Frieze group, Wallpaper group, Rod group, Layer group
- Index entries for sequences related to groups
Comments