A293062 Triangle read by rows (n >= 0, 0 <= k <= n): T(n,k) = number of k-dimensional magnetic subperiodic groups in n-dimensional space, not counting enantiomorphs.
2, 5, 7, 31, 31, 80, 122, 360, 528, 1594, 1025
Offset: 0
Examples
The triangle begins: 2; 5, 7; 31, 31, 80; 122, 360, 528, 1594; 1025, ...
Links
- H. Grimmer, Comments on tables of magnetic space groups, Acta Cryst., A65 (2009), 145-155.
- D. B. Litvin, Magnetic Group Tables
- A. F. Palistrant and S. V. Jablan, Enantiomorphism of three-dimensional space and line multiple antisymmetry groups, Publications de l'Institut Mathématique, 49(63) (1991), 51-60.
- B. Souvignier, The four-dimensional magnetic point and space groups, Z. Kristallogr., 221 (2006), 77-82.
- Index entries for sequences related to groups
Formula
T(n,n) = A293060(n+1,n).
Comments