A293071 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} Sum_{j=0..k} (-1)^j*j!*x^(j*i).
1, 1, 0, 1, -1, 0, 1, -1, -1, 0, 1, -1, 1, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, -6, 0, 1, 0, 1, -1, 1, -6, 0, -3, 0, 0, 1, -1, 1, -6, 24, 3, 4, 1, 0, 1, -1, 1, -6, 24, 3, 4, -3, 0, 0, 1, -1, 1, -6, 24, -117, -20, -3, 4, 0, 0, 1, -1, 1, -6, 24, -117, -20, -27, -8, -2
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 0, -1, -1, -1, -1, ... 0, -1, 1, 1, 1, ... 0, 0, 0, -6, -6, ... 0, 0, 0, 0, 24, ... 0, 1, -3, 3, 3, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
nmax = 12; col[k_] := CoefficientList[Product[Sum[(-1)^j j! x^(i j), {j, 0, k}], {i, 1, nmax+1}] + O[x]^(nmax+1), x]; M = PadRight[col[#], nmax+1]& /@ Range[0, nmax] // Transpose; A[n_, k_] := M[[n+1, k+1]]; Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 15 2020 *)