cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293108 Number A(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 3, 0, 1, 1, 3, 6, 5, 0, 1, 1, 3, 7, 15, 7, 0, 1, 1, 3, 7, 19, 31, 11, 0, 1, 1, 3, 7, 20, 48, 73, 15, 0, 1, 1, 3, 7, 20, 53, 131, 155, 22, 0, 1, 1, 3, 7, 20, 54, 157, 348, 351, 30, 0, 1, 1, 3, 7, 20, 54, 163, 455, 954, 755, 42, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 30 2017

Keywords

Examples

			Square array A(n,k) begins:
  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,   1,   1,   1,   1,   1,   1, ...
  0,  2,   3,   3,   3,   3,   3,   3, ...
  0,  3,   6,   7,   7,   7,   7,   7, ...
  0,  5,  15,  19,  20,  20,  20,  20, ...
  0,  7,  31,  48,  53,  54,  54,  54, ...
  0, 11,  73, 131, 157, 163, 164, 164, ...
  0, 15, 155, 348, 455, 492, 499, 500, ...
		

Crossrefs

Main diagonal gives A293110.

Programs

  • Maple
    h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(l[k]
        n, 0, g(n-i, i, [l[], i])))))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(g(d, k, [])
          *d, d=numtheory[divisors](j))*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    h[l_] := Function [n, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[ l[[k]] < j, 0, 1], {k, i+1, n}], {j, 1, l[[i]]}], {i, n}]][Length[l]];
    g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Table[1, n]]], g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]]];
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[g[d, k, {}]*d, {d, Divisors[j] }]*A[n - j, k], {j, 1, n}]/n];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)

Formula

G.f. of column k: Product_{j>=1} 1/(1-x^j)^A182172(j,k).
A(n,k) = Sum_{j=0..k} A293109(n,j).
A(n,n) = A(n,k) for all k >= n.