cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293129 L.g.f.: Sum_{n=-oo..+oo} (x - x^(2*n-1))^(2*n-1) / (2*n-1).

Original entry on oeis.org

1, 4, 1, 15, 1, 12, 40, 16, 1, 77, 92, 24, 101, 28, 204, 373, 1, 36, 667, 40, 575, 689, 826, 48, 393, 1582, 1379, 1937, 590, 60, 6101, 64, 1, 5227, 3129, 9515, 1826, 76, 4390, 12404, 11341, 84, 18361, 88, 5875, 46320, 7844, 96, 1553, 33133, 38886, 50883, 25741, 108, 25507, 44993, 82265, 91449, 15835, 120, 150162, 124, 19376, 390653, 1, 104015, 29394, 136, 242217, 249506, 507789, 144, 210831, 148, 33079, 647187, 593029, 711482, 47101, 160
Offset: 1

Views

Author

Paul D. Hanna, Oct 11 2017

Keywords

Comments

Compare l.g.f. to: Sum_{n=-oo..+oo, n<>0} (x - x^n)^n / n = -log(1-x).
Here l.g.f. L(x) = Sum_{n>=1} a(n) * x^(2*n-1) / (2*n-1).
a(2^n + 1) = 1 for n >= 1 (conjecture).

Examples

			L.g.f.: L(x) = x + 4*x^3/3 + x^5/5 + 15*x^7/7 + x^9/9 + 12*x^11/11 + 40*x^13/13 + 16*x^15/15 + x^17/17 + 77*x^19/19 + 92*x^21/21 + 24*x^23/23 + 101*x^25/25 + 28*x^27/27 + 204*x^29/29 + 373*x^31/31 + x^33/33 + 36*x^35/35 + 667*x^37/37 + 40*x^39/39 + 575*x^41/41 + 689*x^43/43 + 826*x^45/45 + 48*x^47/47 + 393*x^49/49 + 1582*x^51/51 + 1379*x^53/53 + 1937*x^55/55 + 590*x^57/57 + 60*x^59/59 +...
such that L(x) = Sum_{n=-oo..+oo} (x - x^(2*n-1))^(2*n-1) / (2*n-1).
The coefficient of x^(2^n+1)/(2^n+1) in L(x) for n>=1 begins:
[4, 1, 1, 1, 1, 1, 1, 1, 1, ...],
and it appears that a(k) = 1 only at k = 1 and k = 2^n + 1 (n>=1).
We may write L(x) = P(x) + Q(x) where
P(x) = (x - x) + (x - x^3)^3/3 + (x - x^5)^5/5 + (x - x^7)^7/7 + (x - x^9)^9/9 + (x - x^11)^11/11 + (x - x^13)^13/13 + (x - x^15)^15/15 + (x - x^17)^17/17 + (x - x^19)^19/19 + (x - x^21)^21/21 +...+ (x - x^(2*n-1))^(2*n-1)/(2*n-1) +...
Q(x) = x/(1 - x^2) + x^9/(3*(1 - x^4)^3) + x^25/(5*(1 - x^6)^5) + x^49/(7*(1 - x^8)^7) + x^81/(9*(1 - x^10)^9) + x^121/(11*(1 - x^12)^11) + x^169/(13*(1 - x^14)^13) +...+ x^((2*n-1)^2) / ((2*n-1)*(1 - x^(2*n))^(2*n-1)) +...
Explicitly,
P(x) = x^3/3 - 4*x^5/5 + 8*x^7/7 - 11*x^9/9 + x^11/11 + 14*x^13/13 + x^15/15 - 50*x^17/17 + 58*x^19/19 + x^21/21 + x^23/23 - 54*x^25/25 + x^27/27 - 28*x^29/29 + 311*x^31/31 - 340*x^33/33 + x^35/35 + 75*x^37/37 + x^39/39 - 81*x^41/41 + 345*x^43/43 - 44*x^45/45 + x^47/47 - 1427*x^49/49 + 1531*x^51/51 - 52*x^53/53 + 496*x^55/55 - 1253*x^57/57 + x^59/59 + 1343*x^61/61 + x^63/63 - 2924*x^65/65 +...
Q(x) = x + 3*x^3/3 + 5*x^5/5 + 7*x^7/7 + 12*x^9/9 + 11*x^11/11 + 26*x^13/13 + 15*x^15/15 + 51*x^17/17 + 19*x^19/19 + 91*x^21/21 + 23*x^23/23 + 155*x^25/25 + 27*x^27/27 + 232*x^29/29 + 62*x^31/31 + 341*x^33/33 + 35*x^35/35 + 592*x^37/37 + 39*x^39/39 + 656*x^41/41 + 344*x^43/43 + 870*x^45/45 + 47*x^47/47 + 1820*x^49/49 + 51*x^51/51 + 1431*x^53/53 + 1441*x^55/55 + 1843*x^57/57 + 59*x^59/59 + 4758*x^61/61 + 63*x^63/63 + 2925*x^65/65 +...
The coefficient of x^(2^n+1)/(2^n+1) in P(x) for n>=1 begins:
[1, -4, -11, -50, -340, -2924, -169032, -33445208, -21619038032, 1 - A293599(n), ...].
The coefficient of x^(2^n+1)/(2^n+1) in Q(x) for n>=1 begins:
[3, 5, 12, 51, 341, 2925, 169033, 33445209, 21619038033, ..., A293599(n), ...].
		

Crossrefs

Cf. A293597 (P(x)), A293598 (Q(x)), A293599, A291937.

Programs

  • PARI
    {a(n) = my(P,Q,Ox = O(x^(2*n+1)));
    P = sum(m=1,n+1, (x - x^(2*m-1) +Ox)^(2*m-1) / (2*m-1) );
    Q = sum(m=1,sqrtint(n+1), x^((2*m-1)^2) / ( (2*m-1) * (1 - x^(2*m) +Ox)^(2*m-1) ) );
    (2*n-1)*polcoeff(P + Q, 2*n-1)}
    for(n=1,80,print1(a(n),", "))

Formula

L.g.f.: Sum_{n=-oo..+oo} (x + x^(2*n-1))^(2*n-1) / (2*n-1) - note the plus sign.
L.g.f.: -log(1-x) - Sum_{n=-oo..+oo, n<>0} (x - x^(2*n))^(2*n) / (2*n).
L.g.f.: L(x) = P(x) + Q(x) where
P(x) = Sum_{n>=1} (x - x^(2*n-1))^(2*n-1) / (2*n-1),
Q(x) = Sum_{n>=1} x^((2*n-1)^2) / ( (2*n-1) * (1 - x^(2*n))^(2*n-1) ).