A293143 Number of vertex points in a Sierpinski Carpet grid subdivided into squares: a(n+1) = 8*a(n) - 8*(3^n+1), a(0) = 4.
4, 16, 96, 688, 5280, 41584, 330720, 2639920, 21101856, 168762352, 1349941344, 10799058352, 86391049632, 691124145520, 5528980409568, 44231805012784, 353854325311008, 2830834258114288, 22646673031792992, 181173381154980016
Offset: 0
Examples
The carpet is formed by squares within a square grid. The initial term is a(0) = 4 for the corners of the unit square. For n = 1 there are 3 X 3 squares, the middle one being open (empty), with 16 vertex points. At the next stage of recursion, these become eight squares with open center, now based on a square of 10 X 10 points. The remaining center square is empty, missing 4 points, thus the next term is 100 - 4 = 96 for a(2). In the next stage there are 8 squares missing 4 points and the new center is missing 64, thus the 28 square grid now has 784 - 32 - 64 = 688 for a(3). This carpet sequence becomes the faces for the cubes in the Menger Sponge recursion of A293144.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000 (Recomputed by M. F. Hasler to include the initial term 4.)
- Eric Weisstein's World of Mathematics, Sierpinski Carpet.
- Wikipedia, Sierpinski carpet.
- Index entries for linear recurrences with constant coefficients, signature (12,-35,24).
Programs
-
Mathematica
FoldList[8 #1 - 8 (3^(#2-1) + 1) &, 4, Range@ 18] (* Michael De Vlieger, Oct 02 2017 *)
-
PARI
prev=4; concat(prev, vector(20, n, prev=8*prev-8*(3^(n-1)+1))) \\ Colin Barker, Oct 08 2017
-
PARI
Vec(4*(1 - 8*x + 11*x^2)/((1 - x)*(1 - 3*x)*(1 - 8*x)) + O(x^30)) \\ Colin Barker, Oct 09 2017
-
PARI
A293143(n)=8*(5+11*2^(3*n-1)+7*3^n)/35 \\ M. F. Hasler, Oct 16 2017
Formula
From Colin Barker, Oct 02 2017, corrected for a(0) = 4 by M. F. Hasler, Oct 16 2017: (Start)
G.f.: 4*(1 - 8*x + 11*x^2) / ((1 - x)*(1 - 3*x)*(1 - 8*x)).
a(n) = 8*(5 + 11*2^(3*n-1) + 7*3^n) / 35.
a(n) = 12*a(n-1) - 35*a(n-2) + 24*a(n-3) for n > 2. (End)
Extensions
Edited to start with a(0) = 4 by M. F. Hasler, Oct 16 2017
Comments