cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Steven Beard

Steven Beard's wiki page.

Steven Beard has authored 10 sequences.

A293144 Number of vertices in a Menger Sponge constructed from a cubic lattice: a(n) = 20*a(n-1) - 24*A293143(n-1).

Original entry on oeis.org

8, 64, 896, 15616, 295808, 5789440, 114790784, 2287878400, 45694209920, 913377753856, 18263504780672, 365237697021184, 7304494763023232, 146087821875273472, 2921739850525976960, 58434664314989709568, 1168692224736473884544
Offset: 0

Author

Steven Beard, Oct 01 2017

Keywords

Comments

a(n) is the number of vertices of a (3^n+1)^3 cubic lattice minus the number of vertices missing for the openings within the sponge. The cubic honeycomb can be constructed by joining 20 cubes of the previous term and subtracting the overlapping vertices of 24 faces (see example).

Examples

			For a(0) we start with a simple cube, having a(0) = 8 corners.
For a(1), the cube is subdivided into 27 smaller cubes forming a lattice of 64 vertices. 7 cubes are removed (but the cubes have no facial or internal vertices to remove until the next stage).
Twenty a(1) cubes, each with 64 vertices, are then combined to form the lattice for a(2). The overlapped vertices of 24 faces (each with 16 vertices) are removed. Thus a(2) = (20*64) - (24*16) = 1280 - 384 = 896. The faces of the cubes are the Sierpinski Carpet grid of A293143.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[8 (1 - 24 x + 131 x^2 - 156 x^3)/((1 - x) (1 - 3 x) (1 - 8 x) (1 - 20 x)), {x, 0, 15}], x] (* Michael De Vlieger, Oct 09 2017 *)
  • PARI
    Vec(8*(1 - 24*x + 131*x^2 - 156*x^3) / ((1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)) + O(x^30)) \\ Colin Barker, Oct 09 2017
    
  • PARI
    A293144(n)=(255+133*3^(n+1)+63*4^n*5^(n+1)+3553*8^(n-1))*64/11305 \\ M. F. Hasler, Oct 16 2017

Formula

From Colin Barker, Oct 02 2017, adjusted for initial a(0) = 8 by M. F. Hasler, Oct 16 2017: (Start)
G.f.: 8*(1 - 24*x + 131*x^2 - 156*x^3) / ((1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)).
a(n) = 64*(3/133 + 3^(1+n)/85 + 11*8^(n-1)/35 + 9*20^n/323).
a(n) = 32*a(n-1) - 275*a(n-2) + 724*a(n-3) - 480*a(n-4) for n > 3.
(End)
a(n) = (64*(133*3^(n+1) + 63*4^n*5^(n+1) + 3553*8^(n-1) + 255)) / 11305.

Extensions

Edited to include initial term 8 by M. F. Hasler, Oct 16 2017

A293143 Number of vertex points in a Sierpinski Carpet grid subdivided into squares: a(n+1) = 8*a(n) - 8*(3^n+1), a(0) = 4.

Original entry on oeis.org

4, 16, 96, 688, 5280, 41584, 330720, 2639920, 21101856, 168762352, 1349941344, 10799058352, 86391049632, 691124145520, 5528980409568, 44231805012784, 353854325311008, 2830834258114288, 22646673031792992, 181173381154980016
Offset: 0

Author

Steven Beard, Oct 01 2017

Keywords

Comments

Figurate number sequence for the Sierpinski Carpet lattice. See the faces of the cubes in "Image 2" in the Wikipedia link of A293144 for an example of the construction grid of the Sierpinski Carpet.

Examples

			The carpet is formed by squares within a square grid. The initial term is a(0) = 4 for the corners of the unit square. For n = 1 there are 3 X 3 squares, the middle one being open (empty), with 16 vertex points. At the next stage of recursion, these become eight squares with open center, now based on a square of 10 X 10 points. The remaining center square is empty, missing 4 points, thus the next term is 100 - 4 = 96 for a(2). In the next stage there are 8 squares missing 4 points and the new center is missing 64, thus the 28 square grid now has 784 - 32 - 64 = 688 for a(3). This carpet sequence becomes the faces for the cubes in the Menger Sponge recursion of A293144.
		

Crossrefs

Programs

  • Mathematica
    FoldList[8 #1 - 8 (3^(#2-1) + 1) &, 4, Range@ 18] (* Michael De Vlieger, Oct 02 2017 *)
  • PARI
    prev=4; concat(prev, vector(20, n, prev=8*prev-8*(3^(n-1)+1))) \\ Colin Barker, Oct 08 2017
    
  • PARI
    Vec(4*(1 - 8*x + 11*x^2)/((1 - x)*(1 - 3*x)*(1 - 8*x)) + O(x^30)) \\ Colin Barker, Oct 09 2017
    
  • PARI
    A293143(n)=8*(5+11*2^(3*n-1)+7*3^n)/35 \\ M. F. Hasler, Oct 16 2017

Formula

From Colin Barker, Oct 02 2017, corrected for a(0) = 4 by M. F. Hasler, Oct 16 2017: (Start)
G.f.: 4*(1 - 8*x + 11*x^2) / ((1 - x)*(1 - 3*x)*(1 - 8*x)).
a(n) = 8*(5 + 11*2^(3*n-1) + 7*3^n) / 35.
a(n) = 12*a(n-1) - 35*a(n-2) + 24*a(n-3) for n > 2. (End)

Extensions

Edited to start with a(0) = 4 by M. F. Hasler, Oct 16 2017

A289999 Sierpinski cuboctahedral numbers: a(n) = 16*4^n - 12*2^n + 9.

Original entry on oeis.org

13, 49, 217, 937, 3913, 16009, 64777, 260617, 1045513, 4188169, 16764937, 67084297, 268386313, 1073643529, 4294770697, 17179475977, 68718690313, 274876334089, 1099508482057, 4398040219657, 17592173461513, 70368719011849, 281474926379017, 1125899806179337, 4503599426043913, 18014398106828809
Offset: 0

Author

Steven Beard, Sep 03 2017

Keywords

Comments

Sierpinski cuboctahedron constructed by joining eight Sierpinski tetrahedra of sequence 4, 10, 34, 130, 514, 2050, 8194... (4^n*2)+2 (the double of A052539). This sequence is also Sierpinski recursion for the octahemioctahedron A274974.

Programs

  • Mathematica
    CoefficientList[Series[(13 - 42 x + 56 x^2)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 25}], x] (* Michael De Vlieger, Sep 03 2017 *)
    Table[16*4^n-12*2^n+9,{n,0,30}] (* or *) LinearRecurrence[{7,-14,8},{13,49,217},30] (* Harvey P. Dale, Dec 31 2018 *)
  • PARI
    Vec((13 - 42*x + 56*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Sep 03 2017
    
  • PARI
    a(n) = 16*4^n - 12*2^n + 9 \\ Charles R Greathouse IV, Nov 03 2017

Formula

a(n) = -3*2^(n + 2) + 2^(2n + 4) + 9.
From Colin Barker, Sep 03 2017: (Start)
G.f.: (13 - 42*x + 56*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)).
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n>2.
(End)

A290396 a(n) = 3*2^n + 3*4^n + 6^(n+1) + 1.

Original entry on oeis.org

13, 55, 277, 1513, 8593, 49825, 292417, 1729153, 10275073, 61254145, 365945857, 2189371393, 13111037953, 78565515265, 470990340097, 2824331231233, 16939544543233, 101611496669185, 609565899227137, 3656983075356673, 21940249178406913, 131634897988091905, 789782999624318977
Offset: 0

Author

Steven Beard, Jul 29 2017

Keywords

Comments

One of several types of cuboctahedra with Sierpinski recursion. This Sierpinski cuboctahedron is a truncation of the six corners of the Sierpinski octahedron (A279512). The resulting Sierpinski cuboctahedron contains six square pyramids joined along the edges thus it can also be constructed by joining Sierpinski square pyramids (A281698).
Each face of the Sierpinski octahedron is a Sierpinski sieve with all triangular spaces completely formed. The triangles opening within the sieve, on each face, become tetrahedral excavations (cf. A067771). The third term above, for example, begins with an octahedron of 489 counters from A005900. From each of the eight faces a tetrahedron of four counters is removed. Thus the corresponding Sierpinski octahedron has 457 counters at this stage of recursion. Next, to construct the Sierpinski cuboctahedron, the truncation of the six corners is 30 counters each, thus 457 minus 180 equals 277, the third term of the Sierpinski cuboctahedral sequence shown above. For the next term in the sequence, two different sizes of tetrahedra are removed (and not only seen on the outer eight faces but also on the newly opened internal faces, now excavated in like manner.
To arrive at the next term, 1513, there are eight tetrahedra of 56 counters AND forty-eight tetrahedra of 4 counters each excavated from the octahedron, and then the six corners of 188 counters each are truncated thus: (56*8) + (4*48) = 640 total counters removed from the octahedral number 3281 (in A005900) to yield the Sierpinski octahedral number 2641 (in A279512, note that for subsequent terms the number of different size excavations of the octahedron increases, thus the next term would require three different sized excavations for the associated octahedron: 8 tetrahedra of 560 counters, 48 tetrahedra of 56 counters, and 288 tetrahedra of 4 counters).
Next truncate the six corners of 188 counters each: (6*188) = 1128. Sierpinski octahedron 2641 - 1128 = 1513, the fourth term in the Sierpinski cuboctahedral sequence above. The square pyramid of 188 counters truncated from each corner is found in A281698 by, in this case, taking the fourth term of 269 and subtracting its base of 81 counters.
The base of the square pyramid that is not counted is actually the square face of the remaining cuboctahedron. It is therefore easier to construct this Sierpinski cuboctahedral geometry by taking the six square pyramids of 269 counters each, subtracting 5 for the overlapping apices and then subtracting 96 to account for the edges where the square pyramids are overlapped: 6*269 = 1614 - 5 = 1609, - 96 = 1513, the fourth term shown in the Sierpinski cuboctahedral sequence above.

Crossrefs

Programs

  • Mathematica
    Table[3*2^n + 3*4^n + 6^(n + 1) + 1, {n, 0, 22}] (* Michael De Vlieger, Jul 29 2017 *)
  • PARI
    Vec((13 - 114*x + 290*x^2 - 204*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Jul 29 2017
    
  • PARI
    a(n) = 3*2^n + 3*4^n + 6^(n+1) + 1 \\ Charles R Greathouse IV, Nov 03 2017

Formula

a(n) = 3*2^n + 3*4^n + 6^(n+1) + 1.
From Colin Barker, Jul 29 2017: (Start)
G.f.: (13 - 114*x + 290*x^2 - 204*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 6*x)).
a(n) = 13*a(n-1) - 56*a(n-2) + 92*a(n-3) - 48*a(n-4) for n>3.
(End)

A281698 a(n) = 5*2^(n-1) + 2^(2*n-1) + 6^n + 1.

Original entry on oeis.org

5, 14, 55, 269, 1465, 8369, 48865, 288449, 1713025, 10210049, 60993025, 364899329, 2185181185, 13094268929, 78498422785, 470721937409, 2823257554945, 16935249707009, 101594317062145, 609497180274689, 3656708198498305, 21939149668876289, 131630499945775105
Offset: 0

Author

Steven Beard, Jan 27 2017

Keywords

Comments

Similar to A279511 Sierpinski square-based pyramid but with tetrahedral openings as found in the structure of the Sierpinski octahedron A279512.

Crossrefs

Programs

  • Maple
    A281698:=n->5*2^(n-1) + 2^(2*n-1) + 6^n + 1: seq(A281698(n), n=0..30); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Table[5*2^(n - 1) + 2^(2 n - 1) + 6^n + 1, {n, 0, 22}] (* or *)
    LinearRecurrence[{13, -56, 92, -48}, {5, 14, 55, 269}, 23] (* or *)
    CoefficientList[Series[(5 - 51 x + 153 x^2 - 122 x^3)/((1 - x) (1 - 2 x) (1 - 4 x) (1 - 6 x)), {x, 0, 22}], x] (* Michael De Vlieger, Jan 28 2017 *)
  • PARI
    Vec((5 - 51*x + 153*x^2 - 122*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Jan 28 2017
    
  • PARI
    a(n) = 5*2^(n-1) + 2^(2*n-1) + 6^n + 1 \\ Charles R Greathouse IV, Jan 29 2017

Formula

From Colin Barker, Jan 28 2017: (Start)
a(n) = 13*a(n-1) - 56*a(n-2) + 92*a(n-3) - 48*a(n-4) for n>3.
G.f.: (5 - 51*x + 153*x^2 - 122*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 6*x)).
(End)

A281699 Sierpinski stellated octahedron numbers: a(n) = 2*(-3*2^(n+1) + 2^(2n+3) + 5).

Original entry on oeis.org

14, 50, 218, 938, 3914, 16010, 64778, 260618, 1045514, 4188170, 16764938, 67084298, 268386314, 1073643530, 4294770698, 17179475978, 68718690314, 274876334090, 1099508482058, 4398040219658, 17592173461514, 70368719011850, 281474926379018, 1125899806179338, 4503599426043914, 18014398106828810
Offset: 0

Author

Steven Beard, Jan 27 2017

Keywords

Comments

Stella octangula with Sierpinski recursion.

Programs

  • Mathematica
    Table[8 (2^(2 n + 1) + 2) - 6 (2^(n + 1) + 1), {n, 0, 25}] (* or *)
    LinearRecurrence[{7, -14, 8}, {14, 50, 218}, 26] (* or *)
    CoefficientList[Series[2 (7 - 24 x + 32 x^2)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 25}], x] (* Michael De Vlieger, Jan 28 2017 *)
  • PARI
    Vec(2*(7 - 24*x + 32*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 28 2017
    
  • PARI
    a(n) = 16*4^n - 12*2^n + 10 \\ Charles R Greathouse IV, Jan 29 2017

Formula

a(n) = 8*(2^(2*n+1)+2) - 6*(2^(n+1)+1).
From Colin Barker, Jan 28 2017: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n>2.
G.f.: 2*(7 - 24*x + 32*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)).
(End)

A279512 Sierpinski octahedron numbers a(n) = 2*6^n + 3*2^n + 1.

Original entry on oeis.org

6, 19, 85, 457, 2641, 15649, 93505, 560257, 3360001, 20156929, 120935425, 725600257, 4353576961, 26121412609, 156728377345, 940370067457, 5642220011521, 33853319282689, 203119914123265, 1218719481593857, 7312316883271681, 43873901287047169, 263243407697117185
Offset: 0

Author

Steven Beard, Dec 14 2016

Keywords

Comments

Sierpinski recursion applied to octahedron. Cf. A279511 for square pyramids.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9, -20, 12}, {6, 19, 85}, 50] (* or *) Table[2*6^n + 3*2^n + 1, {n,0,50}] (* G. C. Greubel, Dec 22 2016 *)
  • PARI
    Vec((6 - 35*x + 34*x^2) / ((1 - x)*(1 - 2*x)*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Dec 15 2016
    
  • Python
    def a(n): return 2*6**n + 3*2**n + 1
    print([a(n) for n in range(23)]) # Michael S. Branicky, Jun 19 2021

Formula

a(n) = 3*2^n + 2^(n+1)*3^n + 1.
a(n) = 6a(n-1) - 6(2^n+1) + 1.
a(n) = 6a(n-1) - (3*2^(n+1) + 5).
a(n) = 2*6^n + 3*2^n + 1.
From Colin Barker, Dec 15 2016: (Start)
a(n) = 9*a(n-1) - 20*a(n-2) + 12*a(n-3) for n>2.
G.f.: (6 - 35*x + 34*x^2) / ((1 - x)*(1 - 2*x)*(1 - 6*x)).
(End)

Extensions

Incorrect terms corrected by Colin Barker, Dec 15 2016

A279511 Sierpinski square-based pyramid numbers: a(n) = 5*a(n-1) - (2^(n+1)+7).

Original entry on oeis.org

5, 14, 55, 252, 1221, 6034, 30035, 149912, 749041, 3744174, 18718815, 93589972, 467941661, 2339691914, 11698426795, 58492068432, 292460211081, 1462300793254, 7311503441975, 36557516161292, 182787578709301, 913937889352194, 4569689438372355, 22848447175084552
Offset: 0

Author

Steven Beard, Dec 13 2016

Keywords

Comments

Square pyramid where each face of the four triangular faces of the pyramid is a Sierpinski gasket. Similarly, a Sierpinski tetrahedron is sequence 4, 10, 34, 130, 514, 2050, 8194 (4^n*2)+2 (the double of A052539). The related octahedral form (creating tetrahedral openings), is A279512.
The sequence gives the number of vertices of this Sierpinski pyramid - see example. - M. F. Hasler, Oct 16 2017

Examples

			At iteration n=0, we simply have a square pyramid with 4+1 = 5 = a(0) vertices.
At iteration n=1, we have 5 copies of the elementary pyramid. However, some of the vertices coincide, and duplicate counts must be subtracted. The 4 vertices of the base of the top pyramid are also the top vertices of the 4 lower pyramids. The lower pyramids touch at the middle of the sides (these points were counted twice), and also in the very middle of the large square base (this point was counted 4 times). Thus a(1) = 25 - 4 - 4 - 3 = 14. - _M. F. Hasler_, Oct 16 2017
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8,-17,10},{5,14,55},30] (* Harvey P. Dale, May 24 2017 *)
  • PARI
    Vec((5-26*x+28*x^2) / ((1-x)*(1-2*x)*(1-5*x)) + O(x^30)) \\ Colin Barker, Dec 15 2016

Formula

a(n) = 5*a(n-1) - (2^(n+1)+7).
From Colin Barker, Dec 15 2016: (Start)
a(n) = 8*a(n-1) - 17*a(n-2) + 10*a(n-3) for n > 2.
G.f.: (5-26*x+28*x^2) / ((1-x)*(1-2*x)*(1-5*x)). (End)
a(n) = 25*5^(n-1)+(2^(n+4)-37*5^n+21)/12. - Alan Michael Gómez Calderón, Oct 04 2023

A274974 Centered octahemioctahedral numbers: a(n) = (4*n^3+24*n^2+8*n+3)/3.

Original entry on oeis.org

1, 13, 49, 117, 225, 381, 593, 869, 1217, 1645, 2161, 2773, 3489, 4317, 5265, 6341, 7553, 8909, 10417, 12085, 13921, 15933, 18129, 20517, 23105, 25901, 28913, 32149, 35617, 39325, 43281, 47493, 51969, 56717, 61745, 67061, 72673, 78589, 84817, 91365, 98241
Offset: 0

Author

Steven Beard, Jul 13 2016

Keywords

Comments

Related to a faceting of the cuboctahedron, sharing the same triangular faces. The octahemioctahedron has the same edge and vertex arrangement as the cuboctahedron (as does A274973). Beginning with the third term, the six square faces are each now "missing" a square pyramid of size 1, 5, 14, 30, 55, 91...(A000330). See A274973 centered cubohemioctahedron for similar cuboctahedral faceting but without the triangular faces.

Crossrefs

Cf. A005902 (centered cuboctahedral numbers), A274973 (centered cubohemioctahedral numbers).

Programs

  • Mathematica
    CoefficientList[Series[(-5 x^3 + 3 x^2 + 9 x + 1)/(x - 1)^4, {x, 0, 40}], x] (* or *)
    Table[(4 n^3 + 24 n^2 + 8 n+3)/3, {n, 41}] (* Michael De Vlieger, Jul 13 2016 *)
  • PARI
    a(n)=(4*n^3+24*n^2+8*n+3)/3 \\ Charles R Greathouse IV, Nov 03 2017

Formula

a(n) = (4*n^3+24*n^2+8*n+3)/3.
G.f.: (-5*x^3+3*x^2+9*x+1)/(x-1)^4.

A274973 Centered cubohemioctahedral numbers: a(n) = 2*n^3+9*n^2+n+1.

Original entry on oeis.org

1, 13, 55, 139, 277, 481, 763, 1135, 1609, 2197, 2911, 3763, 4765, 5929, 7267, 8791, 10513, 12445, 14599, 16987, 19621, 22513, 25675, 29119, 32857, 36901, 41263, 45955, 50989, 56377, 62131, 68263, 74785, 81709, 89047, 96811, 105013, 113665, 122779, 132367
Offset: 0

Author

Steven Beard, Jul 13 2016

Keywords

Comments

A faceting of the cuboctahedron, sharing the same square faces. The cubohemioctahedron has the same edge and vertex arrangement as the cuboctahedron. Beginning with the fourth term, the eight tetrahedral faces are each now "missing" a tetrahedron of size 1,4,10,20,35...(A000292). See A274974 centered octahemioctahedron for similar cuboctahedral faceting but with the square faces "missing."

Crossrefs

Cf. A005902 (centered cuboctahedral numbers), A274974 (centered octahemioctahedral numbers).

Programs

Formula

a(n) = 2*n^3+9*n^2+n+1.
G.f.: (-7*x^3+9*x^2+9*x+1)/(x-1)^4.