A279511
Sierpinski square-based pyramid numbers: a(n) = 5*a(n-1) - (2^(n+1)+7).
Original entry on oeis.org
5, 14, 55, 252, 1221, 6034, 30035, 149912, 749041, 3744174, 18718815, 93589972, 467941661, 2339691914, 11698426795, 58492068432, 292460211081, 1462300793254, 7311503441975, 36557516161292, 182787578709301, 913937889352194, 4569689438372355, 22848447175084552
Offset: 0
At iteration n=0, we simply have a square pyramid with 4+1 = 5 = a(0) vertices.
At iteration n=1, we have 5 copies of the elementary pyramid. However, some of the vertices coincide, and duplicate counts must be subtracted. The 4 vertices of the base of the top pyramid are also the top vertices of the 4 lower pyramids. The lower pyramids touch at the middle of the sides (these points were counted twice), and also in the very middle of the large square base (this point was counted 4 times). Thus a(1) = 25 - 4 - 4 - 3 = 14. - _M. F. Hasler_, Oct 16 2017
-
LinearRecurrence[{8,-17,10},{5,14,55},30] (* Harvey P. Dale, May 24 2017 *)
-
Vec((5-26*x+28*x^2) / ((1-x)*(1-2*x)*(1-5*x)) + O(x^30)) \\ Colin Barker, Dec 15 2016
A283070
Sierpinski tetrahedron or tetrix numbers: a(n) = 2*4^n + 2.
Original entry on oeis.org
4, 10, 34, 130, 514, 2050, 8194, 32770, 131074, 524290, 2097154, 8388610, 33554434, 134217730, 536870914, 2147483650, 8589934594, 34359738370, 137438953474, 549755813890, 2199023255554, 8796093022210, 35184372088834, 140737488355330, 562949953421314
Offset: 0
-
Table[2 4^n + 2, {n, 0, 30}] (* Bruno Berselli, Feb 28 2017 *)
2 (4^Range[0, 20] + 1) (* Eric W. Weisstein, Aug 17 2017 *)
LinearRecurrence[{5, -4}, {4, 10}, 20] (* Eric W. Weisstein, Aug 17 2017 *)
CoefficientList[Series[-((2 (-2 + 5 x))/(1 - 5 x + 4 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 17 2017 *)
-
a(n)=2*4^n+2 \\ Charles R Greathouse IV, Feb 28 2017
-
Vec(2*(2 - 5*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Mar 02 2017
-
def a(n): return 2*4**n + 2
print([a(n) for n in range(25)]) # Michael S. Branicky, Aug 29 2021
Entry revised by Editors of OEIS, Mar 01 2017
A281698
a(n) = 5*2^(n-1) + 2^(2*n-1) + 6^n + 1.
Original entry on oeis.org
5, 14, 55, 269, 1465, 8369, 48865, 288449, 1713025, 10210049, 60993025, 364899329, 2185181185, 13094268929, 78498422785, 470721937409, 2823257554945, 16935249707009, 101594317062145, 609497180274689, 3656708198498305, 21939149668876289, 131630499945775105
Offset: 0
-
A281698:=n->5*2^(n-1) + 2^(2*n-1) + 6^n + 1: seq(A281698(n), n=0..30); # Wesley Ivan Hurt, Apr 09 2017
-
Table[5*2^(n - 1) + 2^(2 n - 1) + 6^n + 1, {n, 0, 22}] (* or *)
LinearRecurrence[{13, -56, 92, -48}, {5, 14, 55, 269}, 23] (* or *)
CoefficientList[Series[(5 - 51 x + 153 x^2 - 122 x^3)/((1 - x) (1 - 2 x) (1 - 4 x) (1 - 6 x)), {x, 0, 22}], x] (* Michael De Vlieger, Jan 28 2017 *)
-
Vec((5 - 51*x + 153*x^2 - 122*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Jan 28 2017
-
a(n) = 5*2^(n-1) + 2^(2*n-1) + 6^n + 1 \\ Charles R Greathouse IV, Jan 29 2017
A290396
a(n) = 3*2^n + 3*4^n + 6^(n+1) + 1.
Original entry on oeis.org
13, 55, 277, 1513, 8593, 49825, 292417, 1729153, 10275073, 61254145, 365945857, 2189371393, 13111037953, 78565515265, 470990340097, 2824331231233, 16939544543233, 101611496669185, 609565899227137, 3656983075356673, 21940249178406913, 131634897988091905, 789782999624318977
Offset: 0
-
Table[3*2^n + 3*4^n + 6^(n + 1) + 1, {n, 0, 22}] (* Michael De Vlieger, Jul 29 2017 *)
-
Vec((13 - 114*x + 290*x^2 - 204*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Jul 29 2017
-
a(n) = 3*2^n + 3*4^n + 6^(n+1) + 1 \\ Charles R Greathouse IV, Nov 03 2017
Showing 1-4 of 4 results.
Comments