cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000351 Powers of 5: a(n) = 5^n.

Original entry on oeis.org

1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125, 6103515625, 30517578125, 152587890625, 762939453125, 3814697265625, 19073486328125, 95367431640625, 476837158203125, 2384185791015625, 11920928955078125
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 5), L(1, 5), P(1, 5), T(1, 5). Essentially same as Pisot sequences E(5, 25), L(5, 25), P(5, 25), T(5, 25). See A008776 for definitions of Pisot sequences.
a(n) has leading digit 1 if and only if n = A067497 - 1. - Lekraj Beedassy, Jul 09 2002
With interpolated zeros 0, 1, 0, 5, 0, 25, ... (g.f.: x/(1 - 5*x^2)) second inverse binomial transform of Fibonacci(3n)/Fibonacci(3) (A001076). Binomial transform is A085449. - Paul Barry, Mar 14 2004
Sums of rows of the triangles in A013620 and A038220. - Reinhard Zumkeller, May 14 2006
Sum of coefficients of expansion of (1 + x + x^2 + x^3 + x^4)^n. a(n) is number of compositions of natural numbers into n parts less than 5. a(2) = 25 there are 25 compositions of natural numbers into 2 parts less than 5. - Adi Dani, Jun 22 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 5-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(5n) = 5n + sigma(n). In fact we have this theorem: p is a prime if and only if all solutions of the equation sigma(p*x) = p*x + sigma(x) are powers of p. - Jahangeer Kholdi, Nov 23 2013
From Doug Bell, Jun 22 2015: (Start)
Empirical observation: Where n is an odd multiple of 3, let x = (a(n) + 1)/9 and let y be the decimal expansion of x/a(n); then y*(x+1)/x + 1 = y rotated to the left.
Example:
a(3) = 125;
x = (125 + 1)/9 = 14;
y = 112, which is the decimal expansion of 14/125 = 0.112;
112*(14 + 1)/14 + 1 = 121 = 112 rotated to the left.
(End)
a(n) is the number of n-digit integers that contain only odd digits (A014261). - Bernard Schott, Nov 12 2022
Number of pyramids in the Sierpinski fractal square-based pyramid at the n-th step, while A279511 gives the corresponding number of vertices (see IREM link with drawings). - Bernard Schott, Nov 29 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A009969 (even bisection), A013710 (odd bisection), A005054 (first differences), A003463 (partial sums).
Sierpinski fractal square-based pyramid: A020858 (Hausdorff dimension), A279511 (number of vertices), this sequence (number of pyramids).

Programs

Formula

a(n) = 5^n.
a(0) = 1; a(n) = 5*a(n-1) for n > 0.
G.f.: 1/(1 - 5*x).
E.g.f.: exp(5*x).
a(n) = A006495(n)^2 + A006496(n)^2.
a(n) = A159991(n) / A001021(n). - Reinhard Zumkeller, May 02 2009
From Bernard Schott, Nov 12 2022: (Start)
Sum_{n>=0} 1/a(n) = 5/4.
Sum_{n>=0} (-1)^n/a(n) = 5/6. (End)
a(n) = Sum_{k=0..n} C(2*n+1,n-k)*A000045(2*k+1). - Vladimir Kruchinin, Jan 14 2025

A020858 Decimal expansion of log_2(5).

Original entry on oeis.org

2, 3, 2, 1, 9, 2, 8, 0, 9, 4, 8, 8, 7, 3, 6, 2, 3, 4, 7, 8, 7, 0, 3, 1, 9, 4, 2, 9, 4, 8, 9, 3, 9, 0, 1, 7, 5, 8, 6, 4, 8, 3, 1, 3, 9, 3, 0, 2, 4, 5, 8, 0, 6, 1, 2, 0, 5, 4, 7, 5, 6, 3, 9, 5, 8, 1, 5, 9, 3, 4, 7, 7, 6, 6, 0, 8, 6, 2, 5, 2, 1, 5, 8, 5, 0, 1, 3, 9, 7, 4, 3, 3, 5, 9, 3, 7, 0, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Equals the Hausdorff dimension of the Sierpinski fractal square-based pyramid, when each square-based pyramid is replaced by 5 half-size such square-based pyramids (see IREM link). - Bernard Schott, Nov 30 2022

Examples

			2.3219280...
		

Crossrefs

Cf. decimal expansion of log_2(m): A020857 (m=3), this sequence, A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).
Sierpinski pyramid: A000351 (number of pyramids), A279511 (number of vertices).

Programs

Extensions

Definition improved by J. Lowell, May 03 2014

A279512 Sierpinski octahedron numbers a(n) = 2*6^n + 3*2^n + 1.

Original entry on oeis.org

6, 19, 85, 457, 2641, 15649, 93505, 560257, 3360001, 20156929, 120935425, 725600257, 4353576961, 26121412609, 156728377345, 940370067457, 5642220011521, 33853319282689, 203119914123265, 1218719481593857, 7312316883271681, 43873901287047169, 263243407697117185
Offset: 0

Views

Author

Steven Beard, Dec 14 2016

Keywords

Comments

Sierpinski recursion applied to octahedron. Cf. A279511 for square pyramids.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9, -20, 12}, {6, 19, 85}, 50] (* or *) Table[2*6^n + 3*2^n + 1, {n,0,50}] (* G. C. Greubel, Dec 22 2016 *)
  • PARI
    Vec((6 - 35*x + 34*x^2) / ((1 - x)*(1 - 2*x)*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Dec 15 2016
    
  • Python
    def a(n): return 2*6**n + 3*2**n + 1
    print([a(n) for n in range(23)]) # Michael S. Branicky, Jun 19 2021

Formula

a(n) = 3*2^n + 2^(n+1)*3^n + 1.
a(n) = 6a(n-1) - 6(2^n+1) + 1.
a(n) = 6a(n-1) - (3*2^(n+1) + 5).
a(n) = 2*6^n + 3*2^n + 1.
From Colin Barker, Dec 15 2016: (Start)
a(n) = 9*a(n-1) - 20*a(n-2) + 12*a(n-3) for n>2.
G.f.: (6 - 35*x + 34*x^2) / ((1 - x)*(1 - 2*x)*(1 - 6*x)).
(End)

Extensions

Incorrect terms corrected by Colin Barker, Dec 15 2016

A283070 Sierpinski tetrahedron or tetrix numbers: a(n) = 2*4^n + 2.

Original entry on oeis.org

4, 10, 34, 130, 514, 2050, 8194, 32770, 131074, 524290, 2097154, 8388610, 33554434, 134217730, 536870914, 2147483650, 8589934594, 34359738370, 137438953474, 549755813890, 2199023255554, 8796093022210, 35184372088834, 140737488355330, 562949953421314
Offset: 0

Views

Author

Peter M. Chema, Feb 28 2017

Keywords

Comments

Number of vertices required to make a Sierpinski tetrahedron or tetrix of side length 2^n. The sum of the vertices (balls) plus line segments (rods) of one tetrix equals the vertices of its larger, adjacent iteration. See formula.
Equivalently, the number of vertices in the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 17 2017
Also the independence number of the (n+2)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 29 2021
Final digit alternates 4 and 0.

Crossrefs

Subsequence of A016957.
First bisection of A052548, A087288; second bisection of A049332, A133140, A135440.
Cf. A002023 (edge count).

Programs

Formula

G.f.: 2*(2 - 5*x)/((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
a(n+1) = a(n) + A002023(n).
a(n) = 2*A052539(n) = A188161(n) - 1 = A087289(n) + 1 = A056469(2*n+2) = A261723(4*n+1).
E.g.f.: 2*(exp(4*x) + exp(x)). - G. C. Greubel, Aug 17 2017

Extensions

Entry revised by Editors of OEIS, Mar 01 2017

A281698 a(n) = 5*2^(n-1) + 2^(2*n-1) + 6^n + 1.

Original entry on oeis.org

5, 14, 55, 269, 1465, 8369, 48865, 288449, 1713025, 10210049, 60993025, 364899329, 2185181185, 13094268929, 78498422785, 470721937409, 2823257554945, 16935249707009, 101594317062145, 609497180274689, 3656708198498305, 21939149668876289, 131630499945775105
Offset: 0

Views

Author

Steven Beard, Jan 27 2017

Keywords

Comments

Similar to A279511 Sierpinski square-based pyramid but with tetrahedral openings as found in the structure of the Sierpinski octahedron A279512.

Crossrefs

Programs

  • Maple
    A281698:=n->5*2^(n-1) + 2^(2*n-1) + 6^n + 1: seq(A281698(n), n=0..30); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Table[5*2^(n - 1) + 2^(2 n - 1) + 6^n + 1, {n, 0, 22}] (* or *)
    LinearRecurrence[{13, -56, 92, -48}, {5, 14, 55, 269}, 23] (* or *)
    CoefficientList[Series[(5 - 51 x + 153 x^2 - 122 x^3)/((1 - x) (1 - 2 x) (1 - 4 x) (1 - 6 x)), {x, 0, 22}], x] (* Michael De Vlieger, Jan 28 2017 *)
  • PARI
    Vec((5 - 51*x + 153*x^2 - 122*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Jan 28 2017
    
  • PARI
    a(n) = 5*2^(n-1) + 2^(2*n-1) + 6^n + 1 \\ Charles R Greathouse IV, Jan 29 2017

Formula

From Colin Barker, Jan 28 2017: (Start)
a(n) = 13*a(n-1) - 56*a(n-2) + 92*a(n-3) - 48*a(n-4) for n>3.
G.f.: (5 - 51*x + 153*x^2 - 122*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 6*x)).
(End)

A281699 Sierpinski stellated octahedron numbers: a(n) = 2*(-3*2^(n+1) + 2^(2n+3) + 5).

Original entry on oeis.org

14, 50, 218, 938, 3914, 16010, 64778, 260618, 1045514, 4188170, 16764938, 67084298, 268386314, 1073643530, 4294770698, 17179475978, 68718690314, 274876334090, 1099508482058, 4398040219658, 17592173461514, 70368719011850, 281474926379018, 1125899806179338, 4503599426043914, 18014398106828810
Offset: 0

Views

Author

Steven Beard, Jan 27 2017

Keywords

Comments

Stella octangula with Sierpinski recursion.

Crossrefs

Programs

  • Mathematica
    Table[8 (2^(2 n + 1) + 2) - 6 (2^(n + 1) + 1), {n, 0, 25}] (* or *)
    LinearRecurrence[{7, -14, 8}, {14, 50, 218}, 26] (* or *)
    CoefficientList[Series[2 (7 - 24 x + 32 x^2)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 25}], x] (* Michael De Vlieger, Jan 28 2017 *)
  • PARI
    Vec(2*(7 - 24*x + 32*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 28 2017
    
  • PARI
    a(n) = 16*4^n - 12*2^n + 10 \\ Charles R Greathouse IV, Jan 29 2017

Formula

a(n) = 8*(2^(2*n+1)+2) - 6*(2^(n+1)+1).
From Colin Barker, Jan 28 2017: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n>2.
G.f.: 2*(7 - 24*x + 32*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)).
(End)

A289999 Sierpinski cuboctahedral numbers: a(n) = 16*4^n - 12*2^n + 9.

Original entry on oeis.org

13, 49, 217, 937, 3913, 16009, 64777, 260617, 1045513, 4188169, 16764937, 67084297, 268386313, 1073643529, 4294770697, 17179475977, 68718690313, 274876334089, 1099508482057, 4398040219657, 17592173461513, 70368719011849, 281474926379017, 1125899806179337, 4503599426043913, 18014398106828809
Offset: 0

Views

Author

Steven Beard, Sep 03 2017

Keywords

Comments

Sierpinski cuboctahedron constructed by joining eight Sierpinski tetrahedra of sequence 4, 10, 34, 130, 514, 2050, 8194... (4^n*2)+2 (the double of A052539). This sequence is also Sierpinski recursion for the octahemioctahedron A274974.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(13 - 42 x + 56 x^2)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 25}], x] (* Michael De Vlieger, Sep 03 2017 *)
    Table[16*4^n-12*2^n+9,{n,0,30}] (* or *) LinearRecurrence[{7,-14,8},{13,49,217},30] (* Harvey P. Dale, Dec 31 2018 *)
  • PARI
    Vec((13 - 42*x + 56*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Sep 03 2017
    
  • PARI
    a(n) = 16*4^n - 12*2^n + 9 \\ Charles R Greathouse IV, Nov 03 2017

Formula

a(n) = -3*2^(n + 2) + 2^(2n + 4) + 9.
From Colin Barker, Sep 03 2017: (Start)
G.f.: (13 - 42*x + 56*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)).
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n>2.
(End)
Showing 1-7 of 7 results.